Korean Journal of Remote Sensing, Vol.23, No.1, 2007, pp.21~32

Application of Hyperion Hyperspectral Remote Sensing
Data for Wildfire Fuel Mapping
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Abstract : Fire fuel map is one of the most critical factors for planning and managing the fire hazard
and risk. However, fuel mapping is extremely difficult because fuel properties vary at spatial scales, change
depending on the seasonal situations and are affected by the surrounding environment. Remote sensing has
potential to reduce the uncertainty in mapping fuels and offers the best approach for improving our abilities.
Especially, Hyperspectral sensor have a great potential for mapping vegetation properties because of their
high spectral resolution. The objective of this paper is to evaluate the potential of mapping fuel properties
using Hyperion hyperspectral remote sensing data acquired in April, 2002. Fuel properties are divided into
four broad categories: 1) fuel moisture, 2) fuel green live biomass, 3) fuel condition and 4) fuel types. Fuel
moisture and fuel green biomass were assessed using canopy moisture, derived from the expression of liquid
water in the reflectance spectrum of plants. Fuel condition was assessed using endmember fractions from
spectral mixture analysis (SMA). Fuel types were classified by fuel models based on the results of SMA.
Although Hyperion imagery included a lot of sensor noise and poor performance in liquid water band, the

overall results showed that Hyperion imagery have good potential for wildfire fuel mapping.
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1. Introduction

Wildland fuels are particular significance to natural
resource managers because unlike weather and
topography, humans can change the available
quantities of fuels (Keane et al., 2001; Roberts et al.,
2003; Elmore et al., 2005). Remote sensing has the
potential to reduce uncertainty when assessing fire
fuels and offers the best approach for improving our

abilities to assess spatially and temporally varying
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fuel characteristics (Roberts and Dennision, 2003;
Chafer et al., 2004; Rolf er al., 2005). In the Korea
Peninsula, the spring season climate with dry weather
results in water deficits and ecosystems that are
highly sensitive to climate perturbations. Spring
drought coupled with the presence of shrub and
forested communities makes wildfire that is one of
the most serious economic and life-threatening
natural disasters in the region. According to the

National Emergency Management Agency statistics,
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about 60 percent of all wildfire broke out in spring
time with a great deal of damage to the area.

Four fuel characteristics are essential for
understanding the behaviour of wildfire: fuel
moisture, fuel green live biomass, fuel condition, and
fuel types (Anderson, 1982; Roberts et al., 2003).
Fuel moisture is the percentage of liquid water
present relative to dry weight in both live and dead
fuels. Fuel biomass describes both live and dead
vegetation dry biomass. Fuel condition is the relative
proportion of live to dead fuels. Dead fuels specially
relate to control fire hazard because they contain less
moisture and react strongly to change in
environmental humidity. Fuel types are usually
classified by surface-area-to-volume ratio, relative
amounts of herbaceous and woody fuels, and size. In
this study, we analysed four fuel characteristics for
mapping fuel properties using Hyperion, an imaging
spectrometer on the Earth Observation 1 (EO-1)
satellite platform. We analysed the fuel moisture and
fuel biomass ih terms of expression of the liquid
water bands. Fuel condition was assessed using green
vegetation (GV) and non-photosynthetic vegetation
(NPV) as endmembers for spectral mixture analysis
(SMA). Fuel types were classified by fuel models
based on the results of SMA including GV, NPV,
bare soil, shadow, agricultural land, and impervious
endmembers. The results of fuel condition and types
were validated by comparing the true-color high

resolution orthoimagery.

2. Background

In the most extreme conditions, such as strong
winds, high temperature and very low humidity, fire
will burn across land with very low fuels. However,
the effects of fuels on fire behavior will differ,

depending on type and structure of the vegetation, the
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level of moisture in the fuel, the arrangement of the
fuel, and the terrain (Roberts et al., 2003; Rolf et al.,
2005). Therefore, there is a clear management
advantage to have an understanding of fuel continuity
across the landscape, especially for wildfire
suppression planning. Remote sensing has been more
explored in mapping fire danger. At a coarse scale,
fire danger is assessed using broadband sensor such
as the Advanced Very High Resolution Radiometer
(AVHRR), and Thematic Mapper (TM). Kasischke et
al.(1993) mapped forest fire boundaries by
subtracting a late-summer AVHRR Normalized
Difference Vegetation Index (NDVI) image from an
early summer scene. Chuvieco and Salas(1996)
assessed fire danger using TM, through some
combination of fuel type mapping, meteorology and
ancillary geographic information. High resolution and
temporal variability imageries are usually used
because of representing one of the greatest sources of
uncertainty in predicting fire danger (Wang et al.,
2004). Hyperspectral images reflected or emitted
electromagnetic radiation over a large number of
contiguous spectral bands. Fine spectral information
also facilitates mapping of biophysical and chemical
information that is directly related to the quality of
wildfire fuels including fuel type, fuel moisture, green
biomass and fuel condition (Roberts et al., 1999;
Dennison et al. 2000; Rolf et al. 2005). Thenkabail et
al.(2004) compared the ability of Hyperion
hyperspectral satellite imagery with the three
broadband sensor (i.e., ETM+, IKONOS, and ALI).
This study showed hyperspectral satellite data
produced models that explained 36-83% more of the
variability in rainforest biomass, and LULC
classification with 45-52% higher overall accuracies.
Canopy moisture and green live biomass are
commonly assessed through expression of the liquid
water bands such as equivalent liquid water thickness
(EWT; Green et al., 1993), the Normalized Difference
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Water Index (NDWI; Gao, 1996) and the Water Index
(WTI; Penuelas et al., 1993). Fuel condition and fuel
type can be estimated using linear SMA approach
including GV and NPV endmembers (Roberts and
Dennision, 2003; Elmore et al., 2005). The linear
SMA assumes that the spectrum measured by a sensor
is a linear combination of the spectra of all
components within the pixel (Adams ez al., 1995).
SMA proceeds with the formation of the following
system of equations (1) for each pixel in the image:

Ruixp = Z(femRem,p) + Ep and Lfer,

1
=1,0<fm<1 @

Where Ry p is reflectance of observed image
spectrum at each band; f,,, is fraction of each
endmember in observed mixed spectrum; R, ; is
reflectance of each endmember at each band; & is
band residual.

40 Kilometess

3. Methods

1) Study Site and Data

The study site is located in southwest part of
GyeongGi-Do, Korea. This area consists of forest,
farmland and small village. Although many species
of trees are present, only a few species dominate the
landscape including pine and oak.

For our study, we used part of the Hyperion
imagery acquired at approximately 02:00 UTC on
April 3, 2002. Hyperion is a hyperspectral instrument
on the Earth Observing 1 (EO-1) spacecraft that was
Jaunched on November 21, 2000. Hyperion imagery
consists of 242 channels ranging from 356-2577nm,
sampled approximately at a 10nm sampling interval.
It is part of EOQ-1 platform and follows Landsat
Enhanced Thematic Mapper (ETM) in its orbits,
providing nearly simultaneous coverage. Each image

contains data for a 7.65km wide (cross-track) by

Figure 1. Index map of study area. Subset of Hyperion image of the study area is located in the city of Hwaseong.
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185km long (along-track) region. In addition,
reflectance spectra were measured for reference using
a portable spectroradiometer (GER3700) with full
real-time data acquisition from 350nm to 2500nm
acquired on May 6, 2006. True-colour high resolution
orthoimagery (1m) acquired in April, 2003 also used
to produce training and validation datasets for

developing and evaluating SMA models.

2) Image Analysis
(1) Detection and Correction of Abnormal Pixels

Hyperion acquires data in pushbroom mode with
two spectrometers, one in the visible and near
infrared (VNIR) range and another in the short-wave
infrared (SWIR) range. We used Hyperion data set
called hyperion level 1R(USGS Hyperion product),
which is radiometrically-corrected for all bad pixels.
However, after a visual examination of a Hyperion
level 1R image, it was apparent that bad pixels still
remained. In addition, there were dark vertical stripes
in the image (Han et al., 2002). Abnormal pixels
were corrected by modified 3 X 3 average filter by the

following equation (2).
X=(d1+d2+d3-gd4+d5+d6) o
a | | a4
\:12
d3 - Abnormal pixel

Figure 2. Example of modified 3 x 3 average filter for abnormal
pixel, X.

(2) Atmospheric correction

The Hyperion data was radiometrically corrected
for reflectance using the FLAASH (Fast Line of sight
Atmospheric Analysis of Hyperspectral Cubes) ver.
4.2 included in ENVI software. The surface
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reflectance was determined by the following equation:

=(——J)+tG—<

1pS J+L, 3

lpS

Where p is the p/ixel surface reflectance; p, is an
average surface reflectance for the pixel; S is the
spherical albedo of the atmosphere; L, is the radiance
back scattered by the atmosphere; A and B are
coefficients that depend on atmospheric and
geometric conditions but not on the surface. The
values of A, B, and L, are determined from
MODTRAN4 calculations that use the viewing and
solar angles and the mean surface elevation of the
measurement, and assume a certain model

atmosphere, aerosol type, and visible range.

(3) Fuel Moisture / Live Biomass

Fuel moisture and fuel biomass were assessed
using two hyperspectral measures, the WI (Penuelas
et al., 1993), and NDWI (Gao, 1996). The closest

band center for Hyperion was used for the numerator

and denominator for WI and NDWL
P8o5
WI = 4
P2 @
NDWI = (Pg57~ P1241) )
T {857+ P1o4))

(4) Fuel condition

Fuel condition was assessed by the proportion of
live canopy components to dead canopy components.
Fuel condition was mapped using SMA that was used
to map green vegetation (GV), non-photosynthetic
vegetation (dead herbaceous plants, litter, and wood),
shadow, and soil. SMA endmembers were selected
from relatively pure pixels using reference data that
were derived from field spectrometer (GER3700) and
high resolution orthoimagery. They were also
selected from the potential models based on whether
they are physically reasonable (fraction are between
0% and 100%) and meet criteria based on the overall
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Figure 3. Reflectance curve of target materials measured by
the spectroradiometer (GER 3700).

fit and residuals. In addition, in order to improve the
quality of SMA, Hyperion image was masked by
non-forest area layer that was classified by maximum
likelihood classification. Although we chose carefully
image endmembers, they still included some minor
error. To correct the problems, we applied linear
interpolation method. The results of SMA were
validated by comparing the true-color high resolution
orthoimagery (1m resolution). We randomly selected
13 pixels from the Hyperion image, and the
orthoimagery was used to estimate the actual fraction
within 3 X 3 window around each sampled Hyperion
pixel (in fact, we used 117 pixels from Hyperion
Image). Thus, for each sample (i.e., 3 X3 window at
Hyperion resolution), actual fraction was estimated
from a corresponding 90 X 90 pixels subset from the
3-band, true-color orthoimagery. Each orthoimagery
subset was classified, using maximum likelihood

classification, into GV, NPV, shadow, and soil.

(5) Fuel type

To classify the fuel type, we applied two steps: 1)
Characterization of live and dead fuel ratios using
SMA method and 2) Organization and ordering of
classes were determined by the fuel type. SMA was
used to estimate six land cover types: GV, NPV, bare

soil, shadow(including water), agricultural land, and

impervious(building, asphalt road, etc.). Spectra
endmembers were extracted from relatively pure
stands of specific land cover dominants. Fuels are the
above ground organic biomass that contributes to a
wildland fire and is usually classified by whether they
are live or dead, woody or herbaceous, and size. The
most commonly used fuel models were constructed
for fire behaviour prediction with the 13 standard fire
behaviour fuel models by Anderson (1982).
However, it is not always possible to recognize all
these classes in their exact form. Thus, considering
the Hyperion image and acquisition date, we
reorganized and simplified Anderson’s model. The

classes are as follows:

Type 1. No vegetation: this category consists of
bare land area, water (i.e., river, lake) and
pavement (i.e., settlements, streets). In this
type, low-spreading fire are the most
common.

Condition: bare soil > 60% or impervious
> 60% or water/shadow > 60%

Type 2. Land fuels: this category comprises few
grasslands, low-lying shrubs and bare land
areas.

Condition: NPV < 30% or agricultural
land > 30%, except Type 1, 3,4, 5.

Type 3. Forest areas with medium understory:

this category comprises forests with

medium surface litter fuels.

Condition: 30% < NPV < 60%, except

Type 1,4, 5.

Type 4. Forest areas with dense understory: this
category comprises forests with dense
undergrowth (leaf litter compacted). This
type favors severe and high density fires.
Condition: NPV > 60%, except Type 1, 5.

Type 5. Forest areas: this category comprise
forest with dense live leafy part of the tree.
Condition: GV > 60%, except Type 1.
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In case of this study, we applied hierarchical
approach method to classify fuel types in accordance
with the above-mentioned standardization (Typel —
Type5 — Type4 — Type3 — Type2). Accuracy
assessment of fuel type was analysed by comparing
the 1-m true color orthoimagery. The error matrix is
the most frequently used method for quantitatively
analysing land use/land cover classification accuracy
and was used in this paper (Jensen, 1996). The
accuracies of the fuel type were checked with a
stratified random sampling method using total 478
samples. Overall accuracy, producer’s accuracy, and
user’s accuracy were calculated based on the error

matrices, and Ky, statistics.

4. Results and Discussions

1) Detection and Correction of Abnormal
Pixels

In the case of Hyperion image, there are many
possible causes for the abnormal pixels including
detector failure, errors during data transfer, and

improper data correction. Hyperion image collected

220 unique spectral bands with a complete spectrum

covering from 357 - 2577nm. However, the Level 1
Radiometric product has a total of 242 bands but only
198 bands are calibrated due to the detectors’ low
responsivity. There are only 196 unique bands
because of an overlap between the VNIR and SWIR
focal planes (Beck, 2003). Therefore, we firstly
removed not calibrated bands. Remote sensing data
acquisition is limited to the non-blocked spectral
regions, called “atmospheric windows”, especially at
adjacent 1400nm and 1900nm specirum (Jensen,
1996). We removed atypical bands including
atmospheric absorption bands. Finally, there are only
150 bands of 242 bands through removing atypical
bands and then we corrected the abnormal pixels

using modified 3 X 3 average filter.

2) Fuel moisture / Live Biomass

WI showed a poor performance due to very low
signal around 980nm of the liquid water band (Figure
5-a). NDWI performance was generally good (Figure
5-b). In this figure, NDWI was scaled from -0.26 to
0.39 (dark to bright). The general patterns of NDWI
showed plant leaf water content that has a close
correlation with canopy biomass and indirectly to the

absorption features of protein, nitrogen, lignin,

Figure 4. Abnormal pixel correction before and after the band 10 of Hyperion image. (a) before; (b) after.
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Figure 5. Image showing (a) W1 and (b) NDWI for Hyperion image.

cellulose and starch concentrations (Gong et al.,

2003). For example, senesced area have low NDWI

and dense vegetation has high NDWL

3) Fuel condition

Hyperion results showed recognizable pattern of
GV, NPV, shadow/water and soil endmembers
(Figure 6). The NPV areas are considered the highest

Figure 6. False color composite showing fraction images for

NPV (red), GV (green), and soil (blue).

27—

fire danger because of an abundance of senescent
plant materials. Areas with high GV fractions are
considered to have lower danger because of the
presence of large amounts of live leaf materials with
its associated moisture. Figure 7 demonstrates how
fuel condition changes depending on NDWI. As
anticipated, the pattern of graph shows a near-linear
increase in the GV fractions and a near-liner decrease
in the NPV as the NDWI varies from dry to wet
condition.

The accuracy of SMA model was estimated actual
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Figure 7. The relationship between NPV and GV fractions
depending on NDWI.
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(@)
Figure 8. The estimation of actual fraction within 3 x 3 window surrounding each sample Hyperion pixel from high resolution

orthoimagery. (a) is the SMA resuilt subset with NPV (red), GV (green), and Soil (blue); (b} is orthoimagety; (c) is classified
image of the orthoimagery subset.

fraction within 3 X3 window surrounding each validation Hyperion pixels (0.844 and 0.919
sample Hyperion pixel from high resolution respectively). SMAgoy and SMAghadow Were
orthoimagery (Figure 8). comparatively poor because those fractions are

SMAgy and SMAypy were estimated a strong, relatively tiny proportion of each pixel. Besides, the
linear relationship to actual fractional cover for the shade fraction is caused by different solar zenith
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Figure 9. Relationship between actual and predicted fraction cover. (a) GV fraction; (b) NPV fraction; (c) Soil fraction; (d) Shadow /

Water fraction.

—-28—



Application of Hyperion Hyperspectral Remote Sensing Data for Wildfire Fuel Mapping

Figure 10. False color composite showing fraction images for
NPV (red), GV (green), and Soil (blue)

angle between Hyperion data and orthoimagery that

were acquired different date and time.

4) Fuel type

Characterization of live fuel, dead fuel, and
exposed substrate ratios was mapped using SMA
with GV, NPV, shadow, soil, agricultural land, and
impervious endmembers (Figure 10). The NPV areas
are considered the highest fire danger as explained in

the previous section. Areas mapped as green (GV)

‘Ty:e 1

Tyoe 2
i Tyoe 3

o 4
WTvoe s
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Figure 11. Classification result showing based on the results
of SMA (Figure 10).

consist of a relatively high rate of live leaf materials.
Area mapped as blue (soil) are classified into the
impervious material and soil. The fuel types shown in
Figure 11 were reproduced by the models, according
to the specific properties of Hyperion image, based
on the results of SMA.

The results of the fuel type mapping are presented
in Table 1 for the deterministic error matrix. The
overall accuracy of the error matrix provided a

relatively good result (74.1 percent). For example,

Table 1. Error matrix for the fuel type map derived from Hyperion image.

Reference Data
User’s
CLASS
Typel Type2 1 Type3 T Type4 Type5 TOTALS Accuracy
Typel 82 1 0 0 83 98.8%
Type2 4 72 6 5 87 82.8%
Map Type3 2 24 51 14 8 99 51.5%
Data ype i
Typed 54 53 0 108 49:1%
Type5 0 0 3 2 96 101 95.1%
TOTALS 88 98 108 75 109 478
Producer’s Accuracy 93.2% 73.5% !17 2% 70.7% 88.1%
Overall Accuracy 74.1%
Khat 67.6%
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“Type5” class including live green vegetation showed
considerably high performance in both producer’s
and user’s accuracy. However, “Type3” and “Type4”
class achieved a low user’s accuracy (51.5 percent
and 49.1 percent, respectively). The failure of those
classes was due to mixed classes, such as dead
surface fuels including dead herbaceous plants, litter,
and wood, which are spectrally quite similar to the
surrounding environment. Furthermore, the spectral
pattern of agricultural land and broadleaved tree has

similar characteristics to NPV in the spring season.

5. Conclusions

Hyperspectral data such as Hyperion imagery
provides a variety of wildfire fuel properties
including indirect measures of live fuel moisture and
green live biomass, improved separation of GV, NPV
and substrate, and improved fuel type mapping.

In this paper, we analysed four fuel characteristics
for understanding the behaviour of wildland fire
using Hyperion hyperspectral image and evaluated
the potential of Hyperion for fuel mapping. In order
to improve the quality of results using Hyperion
image, we firstly removed non-calibrated band and
atypical bands, and then corrected abnormal pixels
before the main process. Surface reflectance of
Hyperion image was also corrected using the
FLAASH ver.4.2 based on MODTRAN4 radiative
transfer code. The measure of canopy moisture based
on 980nm liquid water band (WI) was estimated very
poor. However, measures based on the 1200nm band
(NDWI) provided a relatively good result. Measures
of fuel condition were mapped using SMA with four
endmembers (GV, NPV, soil, and shadow) and the
results of SMA were validated by comparing the true-
color high resolution orthoimagery. SMAgy and

SMAnNpy were found to have a strong, linear

relationship to actual fractional cover (0.844 and
0.919 respectively). The ability of Hyperion to
distinguish NPV is important because NPV is a
valuable factor of fire danger assessment. However
broadband remote sensing data under the limited
conditions cannot be distinguished from the
surrounding environment. Fuel type was mapped
using SMA and reclassification of SMA results. The
overall accuracy of fuel type map appeared 74.1%
and especially “Type5” class showed high
performance (exceeded 93.2%). However, “Type3”
and “Typed4” class achieved a low accuracy due to
mixed classes and ambiguous environment in spring
season.

Hyperion is the first hyperspectral sensor in space
and gathers near-continuous data in 220 discrete
narrow bands along the 356-2577nm spectral range at
30m spatial resolution and 16bits. Besides, the
relatively large swath provides fairly good regional
coverage throughout the world compared to airborne
hyperspectral system and repeat frequency would
allow better mapping of time-varying fuel properties.
Although Hyperion imagery includes a lot of sensor
noise and poor performance in liquid water band, it
offers the potential of fuel mapping using a large

number of spectral bands.
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