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Abstract: Variations in soil physical and chemical properties 
can affect agricultural productivity and the environmental 
implications of crop production. These variations are present 
and may be important at regional, field, and sub-field 
(precision agriculture) scales. Because traditional 
measurements are time-consuming and expensive, reflectance-
based estimates of soil properties such as texture, organic 
matter content, water content, and nutrient status are attractive. 
Soil properties have been related to reflectance measured with 
laboratory, in-field, airborne, and satellite sensors. Both 
multispectral and hyperspectral instruments have been used, 
with both natural and artificial illumination. Varying levels of 
accuracy have been obtained, with the best results (r > 0.95) 
using hyperspectral reflectance data to estimate soil organic 
matter and water content.  
Keywords: precision agriculture, hyperspectral, organic matter, 
texture, fertility, soil water content 
 

 
1. Introduction 

 
Soil variability is a factor in agricultural productivity 

and the environmental implications of crop production. 
Soil variability at regional and local scales has long been 
recognized, and soil scientists have developed soil 
surveys and other approaches to characterizing soil 
differences. In recent years, sub-field soil variability has 
been studied extensively as a key part of the precision 
agriculture approach to crop management. In precision 
agriculture, spatiotemporal within-field variability is 
measured and agricultural practices are adjusted to 
optimize production, and/or environmental stewardship 
with respect to this variability. Even at the sub-field 
precision agriculture scale, soil variability can have a 
large effect on crop production. For example, we have 
related up to 74% of within-field variability in crop yield 
to variations in soil properties [1]. Soil variability within 
fields can also have an effect on environmental factors, 
such as herbicide concentrations in the soil [2].  

In order to account for soil variability in agricultural 
management systems, cost- and time-efficient ways to 
quantify such variability are needed. The objective of 

this paper is to discuss several approaches to reflectance-
based sensing of soil properties such as texture, organic 
matter, water content, and nutrient levels. 

 
2. Reflectance Sensing Methods 

 
1) Reflectance Characteristics of Soils 
 

The spectral reflectance of soils has been studied 
extensively as a function of soil chemical and physical 
properties [3]. Soil reflectance is generally low, but 
increases monotonically with wavelength through the 
visible and near-infrared (NIR) regions of the spectrum. 
Soil reflectance is influenced by mineral composition of 
the soil parent material, organic matter, water content, 
physical surface conditions (e.g., surface roughness, 
aggregation), soil constituents (e.g., particle size, iron 
oxide, soluble salts), and observation conditions (e.g., 
illumination, view direction) [3, 4].  

 
2) Remote Sensing 

 
A variety of aircraft- and satellite-based remote 

sensing data sources, such as photographs, videographs, 
and multispectral and hyperspectral images, are available 
for use in agricultural applications. Interpretation of 
these images is often complicated by a lack of timeliness 
(i.e., delays due to clouds obscuring the area of interest 
in the optimum sensing window), variable signal 
attenuation in the atmosphere, and complex interactions 
of sun/sensor/ target geometry [5].  

Although satellite remote sensing has the ability to 
cover larger areas at a potentially lower cost, much of the 
current work in agricultural remote sensing is 
accomplished with airborne data. For example, in a study 
described elsewhere in this volume [6], we related 
aircraft hyperspectral bare-soil images of a field to 
variations in soil properties. Challenges encountered in, 
and not unique to, this study included distortion of 
images due to aircraft attitude changes, and the need for 



image-specific radiometric calibration. These practical 
issues, coupled with only a slight increase in accuracy 
over more conventional multispectral data [6], led us to 
conclude that hyperspectral remote sensing of soil 
properties is currently of  limited utility. 

 
3) Close-Range Sensing 
 

In addition to data collected by aerial or satellite 
sensors, reflectance data can be obtained with sensors 
operating near the soil surface. Depending on 
configuration, these sensors may be in contact with the 
soil, or may operate at distances from a few mm to a few 
m away from the surface. The close-range approach has 
several potential advantages over the remote sensing 
approach – spatial resolution can be higher; 
georeferencing is generally less of an issue, and 
problems caused by variations in illumination intensity 
and/or geometry can be eliminated through the use of 
artificial lighting.  

The close-range approach has been implemented both 
with commercial radiometers and with prototype sensors 
developed for particular applications. Both commercial 
and prototype systems have been applied in two ways – 
direct within-field sensing and laboratory reflectance 
sensing of soil samples collected in the field. 
Commercial radiometers used to estimate soil parameters 
have acquired data at either several [7] or many [8] 
wavelengths in the visible and/or NIR regions. Prototype 
soil sensors have ranged in complexity from those that 
measure reflectance at a single visible wavelength [9] to 
those that obtained data at >300 wavelengths in the 
visible and NIR [10]. Most prototype soil sensors have 
been developed to incorporate artificial illumination and 
to exclude ambient sunlight for improved accuracy. For 
example, we developed [11] and later improved [12] a 
portable NIR spectrophotometer with self-contained 
illumination. This device worked well for quantifying 
soil properties in the laboratory, but was less accurate in 
the field, where movement of soil past the sensor during 
the data collection process increased measurement noise.   
  

3. Applications 
 

1) Soil Texture  
 

Surface soil texture, either represented by textural 
class (e.g., silt loam, silty clay loam) or by the fractions 
of sand, silt, and clay present, affects soil reflectance 
characteristics. Using procedures described elsewhere in 
this volume [6], we related airborne hyperspectral data to 
surface texture variations across a field. Using a field-
specific calibration and a stepwise multiple linear 
regression (SMLR) method for spectral band selection, 
reflectance data from 2-3 visible wavelength bands were  
predictive of clay fraction (R2 ≈ 0.6 to 0.8). In laboratory 
analyses of soil samples collected from 30 locations 
across the state of Illinois in the USA, we were able to 
estimate surface clay fraction (R2 = 0.88) based on 

reflectance from 6 bands in the wavelength range from 
1850 to 2400 nm [12]. Other researchers [e.g., 13] have 
reported similar results using laboratory reflectance data. 

Because many management decisions are based on 
soil textural class, spectral estimation of this property is 
a reasonable option. Researchers in Arizona, USA used 
airborne multispectral and satellite (Landsat and SPOT) 
images to estimate textural classes across a 350- ha area 
[7]. Classification accuracy was 81% with the airborne 
data and 88 to 92% with the satellite data. 

 
2) Organic Matter 
 

Soil organic matter (OM) has a strong influence on 
soil reflectance [3].  Soils with more OM have a lower 
reflectance in the visible and NIR regions. If the other 
soil properties affecting reflectance (e.g., soil water 
content, parent material) are relatively homogeneous 
over the area (or soils) of interest, then it is feasible to 
directly estimate OM using visible reflectance, perhaps 
from a single band [8, 9].  However, in our research [14] 
NIR data were more predictive of OM than were visible 
data, for a range of soils and water contents. Excellent 
estimations (R2 > 0.9) were possible with as few as 12 
reflectance data points from a commercial laboratory 
spectrophotometer [14], while 24 points from a mobile 
sensor [11, 12] provided similar levels of accuracy (R2 = 
0.85).  Other researchers have also used close-range NIR 
reflectance to estimate OM [e.g., 8, 10, 13] with varying 
degrees of success. 

Remote sensing estimates of within-field variation in 
OM have generally been calibrated to laboratory 
analyses of samples obtained from the same field. In our 
work [6], the relationship of OM to visible reflectance 
data was not strong (R2 ≈ 0.4); however, there was little 
OM variation within the test field. Other researchers [15] 
have used true color aerial images, calibrated with in-
field sampling, to estimate OM variability in production 
fields with a classification accuracy of 74 to 77%. 

 
3) Soil Water Content 
 

Reflectance sensing of soil moisture generally relies 
on the water absorption bands present in the NIR 
spectrum at approximately 1450 and 1950 nm [3]. For 
example, we were able to estimate soil water content in 
the laboratory (R2 > 0.95), using reflectance in 4 bands 
from 1730 to 2470 nm [12]. Reflectance at 1462 nm was 
related (R2 = 0.68) to soil water content in field research 
in Japan [10]. A review of close-range sensing of water 
content, OM and other soil properties is given in [16]. 
 
4) Soil Nutrients 
 

In precision agriculture, variations in soil chemical 
properties important for plant growth (e.g., phosphorus, 
potassium, pH) are generally determined by laboratory 
analysis of soil samples collected on a spatial pattern; 
most often a uniform grid. We related this type of grid-



sample data to aerial hyperspectral image data [6] for a 
35-ha field. Calibrations developed using SMLR were 
reasonable (R2 = 0.4 to 0.65) for cations (Ca, K, Mg), 
CEC, and pH. Phosphorus levels were not well-
represented by the image data (R2 < 0.2). Other 
researchers [e.g., 17] have reported variable success 
when relating reflectance to soil chemical properties.  

 
5) Other Soil Properties 

Reflectance-based sensing has been applied to a 
number of other soil properties, including surface 
roughness and salinity. In addition, such techniques have 
been used to assess crop residue cover and to infer soil 
properties from crop spectral responses. A recent review 
can be found in [18]. 

 
4. Conclusions 

 
Soil reflectance in the visible and NIR regions can 

provide efficient estimates of variations in such soil 
properties as texture, organic matter, water content, and 
nutrients. Generally, the strongest relationships between 
reflectance and soil properties have been found in 
controlled laboratory tests on prepared soil samples. In 
such settings, accurate predictions (R2 > 0.8) have been 
obtained for texture (i.e., clay fraction), organic matter, 
soil water, and some soil nutrients. These accuracies 
have been possible even when prediction equations are 
developed for widely varying soil types (i.e., varying in 
texture and organic matter), and over a range of water 
contents. 

Accuracy has generally been somewhat less for close-
range sensing under field conditions. Reasons for this 
reduction in accuracy may include increased 
instrumentation noise and, for sensors without artificial 
light sources, variability in ambient lighting conditions.  
Compared with remote sensing, close-range sensors 
allow a higher degree of control over data acquisition 
and, with incorporation of a soil-opening mechanism, 
may obtain measurements below the soil surface.    

Relationships between remotely sensed images and 
soil properties have, for the most part, been less accurate. 
Issues related to radiometric calibration and accurate 
registration of images with ground-measured data may 
account for some of this reduction in accuracy. Another 
factor is that many remote sensing images do not extend 
past about 1100 nm, rendering many of the important 
NIR wavelengths unavailable. Although the inherent 
accuracy of soil property estimates from remote sensing 
images is lower, images can be a useful tool for 
densifying soil property estimates when used in 
conjunction with ground-based data collection. 
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