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Abstract: Leaf C:N ratio is a new factor in the field of bio-
chemical inversion with hyperspectral data. Effects of com-
mon-used spectral transformations including log(R), log(1/R), 
1/R, etc. from 400nm to 2490nm on its inversion are compared. 
Results show that their effects on statistical modeling are not 
apparent. Continuum removal is used on original reflectance in 
the range of 2030nm to 2220nm, in which exists an apparent 
absorption peak due to cellulose, lignin, protein, etc. The effect 
is distinctive and tends to improve the precision of C:N ratio 
inversion. Further, it is a robust and physically based transfor-
mation. 
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1. Introduction 
 

With the development of hyperspectral techniques, 
remote sensing of vegetation reached an amazing atom 
and molecule level. Spectral reflectance could be meas-
ured at nm level in visible and near infrared region, 
which realizes continuous reflectance spectra for any 
object. In principle, the spectra are determined by the 
biochemical compositions in a leaf and their chemical 
elements, micro-structure and content. That is the reason 
why we are able to inverse biochemical information 
from their spectra. 

Methods of biochemical inversion with remotely 
sensed data could be divided into two types as a whole,  
physical modeling and statistical modeling. The latter is 
simple and easy to practise, so it is widely used in many 
researches [1][2]. However, it is site-specific, time-specific, 
short of robustness and sometimes hard to understand. 
All these features retard its further applications and de-
velopment  [3]. Spectral transformations are mathematic 
transforms of original reflectance, which are always used 
prior to statistical analyses in order to attain higher coef-
ficient of correlation or regression [4]. The common-used 
spectral transformations are simple operations on origi-
nal reflectance, such as 1/R, log(R), log(1/R), etc. All of 
them aim to make absorption features in certain wave-
lengths more distinctive. Then derivative spectra (dR) 
are developed to eliminate influences caused by back-
grounds like soil. Its effect is quite good in many cases. 
Continuum removal is a numerical method to estimate 
the absorptions not due to the band of interest and re-
move their effects. Band depth normalization is another 

spectral transformation, which is based on continuum-
removed spectra [5]. Some researches show that it is a 
good preprocessing of statistical modeling, which makes 
the model more robust. 
  In most previous researches, biochemical composi-
tions are treated as inversion objects, such as nitrogen, 
chlorophyll, cellulose, lignin, etc [4][5]. While in practice, 
C:N ratio is widely used in many fields such as ecology, 
global changes, precision agriculture, etc. But it is rarely 
studied unfortunately [6]. Given its importance in the nu-
trition utilizing efficiency (NUE) and plant life processes, 
we use C:N ratio as an inversion object here. 

In this paper, all the transformations mentioned above 
will be compared for their effects on leaf C:N ratio in-
version. 
 

2. Method 
 

Reciprocal, logarithmic and first derivative operations 
are employed on original reflectance (R) or its reciprocal 
respectively in the range of 400nm to 2490nm with 
10nm interval. Continuum removal is employed on R in 
one absorption feature centered at 2100nm with 2nm 
interval. Two end points are set at 2030nm and 2220nm 
respectively.  

Statistical analyses on the transformed spectra include 
correlation analysis and stepwise multiple linear regres-
sion. Coefficients of correlation and coefficients of de-
termination are compared site-by-site and transforma-
tion-by-transformation to find the advantages and disad-
vantages of each transformation and to examine their 
robustness in statistical modeling. As to 1/R, log(R), 
log(1/R) and dR, all bands from 400nm to 2490nm with 
10nm interval are participated in correlation and regres-
sion operation, while as to continuum-removed reflec-
tance (R’), only bands from 2030nm to 2220nm with 
2nm interval are participated in, because one continuum 
represents only one absorption feature. As we can see in 
Fig. 1, two main carbon-containing compositions, cellu-
lose and lignin both have one absorption peak at 2100nm 
or so and form a V-shape and a U-shape respectively, 
while as to protein, a main nitrogen-containing composi-
tion in a leaf, has two absorption peaks at this region and 
forms a distinguishable W-shape [7][8]. So that we express 
our interests in this region. 



 
3. Data Set 

 
Reflectance data and biochemical data used in this 

study are both from NASA ACCP (Accelerated Canopy 
Chemistry Program) data set [9], which was compiled by 
an interdisciplinary team to investigate the feas ibility of 
making estimates of canopy biochemical compositions 
from remote sensing observation. More than 500 dry 
leaf samples from three eastern U.S. forests (Harvard 
Forest, Massachusetts; Blackhawk Island, Wisconsin; 
and Howland, Maine) are examined. All samples were 
oven dried at 70℃  for 48h, ground through a 1 mm 
mesh, and homogenized prior to measurement [10]. 
Spectral reflectance was measured with a NIR-Systems 
Model 6250 scanning monochromator with spinning 
sample cup module [11]. Reflectance data were gathered 
over the wavelengt h range from 400 nm to 2498 nm at 
a 2 nm interval with a 10 nm bandpass and recorded in 
the form of log(1/R). Descriptive statistics of the 
chemical concentrations and C:N ratio at each site are 
shown in Table 1. We can see that standard deviations 
of carbon concentrations and nitrogen concentrations of 
the 3 sites are relatively small compared to those of 
C:N ratio. 

4. Results 
 
1) Correlation analysis  
 
  The change of correlation coefficients (r) about C:N 
ratio and different transformed reflectance spectra are 
shown in Fig. 2, which includes three pictures represent-
ing three sites respectively. Four curves are almost 
overlapping, they are R, 1/R, log(R) and log(1/R), in 
which the curve of log(R) and log(1/R) are overlapping 
absolutely for log(1/R) equals  –log(R). The zigzag green 
curve shows the correlation of C:N ratio and first deriva-
tive reflectance spectra. We can see that the effects of 
transformations such as 1/R, log(R) and log(1/R) on cor-
relation coefficients are not apparent. The maximums of 
r of those transformations locate at the same wavelengths, 

 
 

Fig. 1. Reflectance spectra of cellulose, lignin and protein 

Table 1. Descriptive statistics of the chemical concentra-
tions and C:N ratio at each site 

 Site No. Max. Min. Mean Std. Dev. 
BHI 182 43.87 52.66 49.60 1.96 
HF 187 47.38 52.68 50.41 0.94 C 

HOW 186 47.52 53.12 50.85 1.22 
BHI 182 1.09 3.51 2.37 0.54 
HF 187 0.93 3.19 1.85 0.54 N 

HOW 186 0.69 2.67 1.34 0.44 

BHI 182 13.13 47.55 22.46 7.21 
HF 187 15.63 54.33 30.10 10.11 C:N 

HOW 186 18.99 74.94 41.85 12.50 
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Fig. 2. Correlation coefficients of C:N ratio and different 
spectra in three sites 



which are the same as those of the original reflectance. 
While the derivative transformation could make the 
maximum coefficients higher and the wavelengths of 
maximums are not the same as R. We should pay atten-
tion to two regions where coefficients are distinctively 
high, they are 800nm region and 2100nm region. The 
former is also called the “red edge” and the latter is 
where we discussed in Part 2. 
 
2) Regression analysis  
 
  Regression results are listed in Table 2. R2 is coeffi-
cient of definition. We choose the one when two wave-
lengths are selected into the regression equation on the 
case of R, 1/R, log(R), log(1/R) and dR. As to R’, we 
choose the R2 when three wavelengths are selected, be-
cause the wavelengths used in regression are limited in 
only one absorption feature. If we want to describe its 
shape, we need at least three points. 
 

Table 2. Regression results  

 Dependent R2 Selected wavelengths 
(nm) 

R 0.775 1430, 2040 
1/R 0.756 1430, 2040 
log(R) 0.767 1430, 2040 
log(1/R) 0.767 1430, 2040 
dR 0.869 530, 2160 

BHI 

R’ 0.902 2052, 2110, 2188 
R 0.791 1190, 1300 
1/R 0.763 720, 1120 
log(R) 0.785 1190, 1300 
log(1/R) 0.785 1190, 1300 
dR 0.871 780, 2150 

HF 

R’ 0.910 2054, 2084, 2180 
R 0.744 710, 1140 
1/R 0.709 630, 1140 
log(R) 0.735 710, 1140 
log(1/R) 0.735 710, 1140 
dR 0.827 780, 2150 

HOW 

R’ 0.889 2058, 2086, 2210 
 

5. Conclusions  
 
  Spectral transformation is a common-used operation 
prior to statistical modeling. 1/R, log(R) and log(1/R) are 
three main transformations which are simple non-linear 
transform on original reflectance, but they do not change 
the monotonicity. So we can find from the results of cor-
relation and regression that their effects on C:N ratio 
inversion are not apparent. Derivative spectra express the 
change of reflectance at adjacent wavelengths, which is 
another kind of information compared to original reflec-
tance. According to Fig. 2 and Table 2, we can conclude 
that the derivative transformation is good for C:N ratio 
inversion. But its spectral curve always vibrates heavily, 
especially in infrared region, which is not good for fol-
lowing analysis. Sometimes, we have to run a risk of 
losing valuable information to smooth it by low-pass 

filter. As to continuum-removed transformation, it is also 
an effective preprocessing for statistical modeling of C:N 
ratio inversion. The wavelengths of selected bands are 
uniform, physically meaningful and not site-specific. Its 
regression effects are satisfactory. We only consider one 
absorption feature in this study, and will pay attention to 
more features in future researches. All in one, derivative 
transformation and continuum removal are better than 
common-used reciprocal and logarithmic transforma-
tions in the statistical modeling of C:N ratio. 
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