• Title/Summary/Keyword: Hypergeometric Function

Search Result 241, Processing Time 0.025 seconds

The Incomplete Lauricella Functions of Several Variables and Associated Properties and Formulas

  • Choi, Junesang;Parmar, Rakesh K.;Srivastava, H.M.
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.19-35
    • /
    • 2018
  • Motivated mainly by certain interesting recent extensions of the generalized hypergeometric function [30] and the second Appell function [6], we introduce here the incomplete Lauricella functions ${\gamma}^{(n)}_A$ and ${\Gamma}^{(n)}_A$ of n variables. We then systematically investigate several properties of each of these incomplete Lauricella functions including, for example, their various integral representations, finite summation formulas, transformation and derivative formulas, and so on. We provide relevant connections of some of the special cases of the main results presented here with known identities. Several potential areas of application of the incomplete hypergeometric functions in one and more variables are also pointed out.

Reliability Demonstration Test for a Finite Population Based on the Conjugacy of the Beta-Binomial Distribution (베타-이항분포의 공액성을 근거로 한 유한 모집단의 신뢰성 입증 시험)

  • Jeon, Jong-Seon;Ahn, Sun-Eung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.35 no.2
    • /
    • pp.98-105
    • /
    • 2012
  • This paper describes the Bayesian approach for reliability demonstration test based on the samples from a finite population. The Bayesian approach involves the technical method about how to combine the prior distribution and the likelihood function to produce the posterior distribution. In this paper, the hypergeometric distribution is adopted as a likelihood function for a finite population. The conjugacy of the beta-binomial distribution and the hypergeometric distribution is shown and is used to make a decision about whether to accept or reject the finite population judging from a viewpoint of faulty goods. A numerical example is also given.

A reducible case of double hypergeometric series involving the riemann $zeta$-function

  • Park, Junesang;H. M. Srivastava
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.107-110
    • /
    • 1996
  • Usng the Pochhammer symbol $(\lambda)_n$ given by $$ (1.1) (\lambda)_n = {1, if n = 0 {\lambda(\lambda + 1) \cdots (\lambda + n - 1), if n \in N = {1, 2, 3, \ldots}, $$ we define a general double hypergeometric series by [3, pp.27] $$ (1.2) F_{q:s;\upsilon}^{p:r;u} [\alpha_1, \ldots, \alpha_p : \gamma_1, \ldots, \gamma_r; \lambda_1, \ldots, \lambda_u;_{x,y}][\beta_1, \ldots, \beta_q : \delta_1, \ldots, \delta_s; \mu_1, \ldots, \mu_v; ] = \sum_{l,m = 0}^{\infty} \frac {\prod_{j=1}^{q} (\beta_j)_{l+m} \prod_{j=1}^{s} (\delta_j)_l \prod_{j=1}^{v} (\mu_j)_m)}{\prod_{j=1}^{p} (\alpha_j)_{l+m} \prod_{j=1}^{r} (\gamma_j)_l \prod_{j=1}^{u} (\lambda_j)_m} \frac{l!}{x^l} \frac{m!}{y^m} $$ provided that the double series converges.

  • PDF

A NOTE ON CERTAIN LAPLACE TRANSFORMS FOR THE GENERALIZED HYPERGEOMETRIC FUNCTION 3F3

  • Kim, Insuk;Jun, Sungtae
    • The Pure and Applied Mathematics
    • /
    • v.25 no.1
    • /
    • pp.7-16
    • /
    • 2018
  • The main objective of this paper is to demonstrate how one can obtain very quickly so far unknown Laplace transforms of rather general cases of the generalized hypergeometric function $_3F_3$ by employing generalizations of classical summation theorems for the series $_3F_2$ available in the literature. Several new as well known results obtained earlier by Kim et al. follow special cases of main findings.

ERTAIN k-FRACTIONAL CALCULUS OPERATORS AND IMAGE FORMULAS OF GENERALIZED k-BESSEL FUNCTION

  • Agarwal, P.;Suthar, D.L.;Tadesse, Hagos;Habenom, Haile
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.167-181
    • /
    • 2021
  • In this paper, the Saigo's k-fractional integral and derivative operators involving k-hypergeometric function in the kernel are applied to the generalized k-Bessel function; results are expressed in term of k-Wright function, which are used to present image formulas of integral transforms including beta transform. Also special cases related to fractional calculus operators and Bessel functions are considered.

ON THE REDUCIBILITY OF KAMPÉ DE FÉRIET FUNCTION

  • Choi, Junesang;Rathie, Arjun K.
    • Honam Mathematical Journal
    • /
    • v.36 no.2
    • /
    • pp.345-355
    • /
    • 2014
  • The main objective of this paper is to obtain a formula containing eleven interesting results for the reducibility of Kamp$\acute{e}$ de F$\acute{e}$riet function. The results are derived with the help of two general results for the series $_2F_1(2)$ very recently presented by Kim et al. Well known Kummer's second theorem and its contiguous results proved earlier by Rathie and Nagar, and Kim et al. follow special cases of our main findings.

NOTE ON SRIVASTAVA'S TRIFLE HYPERGEOMETRIC SERIES HA AND HC

  • Kim, Yong-Sup;Rathie, Arjun-K.;Choi, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.3
    • /
    • pp.581-586
    • /
    • 2003
  • The aim of this note is to consider some interesting reducible cases of $H_{A}\;and\;H_{C}$ introduced by Srivastava who actually noticed the existence of three additional complete triple hypergeometric functions $H_{A},\;H_{B},\;and\;H_{C}$ of the second order in the course of an extensive investigation of Lauricella's fourteen hypergeometric functions of three variables.

ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS FOR 2F1 HYPERGEOMETRIC SERIES

  • Rakha, Medhat A.;Ibrahim, Adel K.;Rathie, Arjun K.
    • Communications of the Korean Mathematical Society
    • /
    • v.24 no.2
    • /
    • pp.291-302
    • /
    • 2009
  • Contiguous relations for hypergeometric series contain an enormous amount of hidden information. Applications of contiguous relations range from the evaluation of hypergeometric series to the derivation of summation and transformation formulas for such series. In this paper, a general formula joining three Gauss functions of the form $_2F_1$[$a_1$, $a_2$; $a_3$; z] with arbitrary integer shifts is presented. Our analysis depends on using shifted operators attached to the three parameters $a_1$, $a_2$ and $a_3$. We also, discussed the existence condition of our formula.

Serendipitous Functional Relations Deducible from Certain Generalized Triple Hypergeometric Functions

  • Choi, June-Sang;Hasanov, Anvar;Turaev, Mamasali
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.109-136
    • /
    • 2012
  • We aim at presenting certain unexpected functional relations among various hypergeometric functions of one or several variables (for example, see the identities in Corollary 5) by making use of Carlson's method employed in his work (Some extensions of Lardner's relations between $_0F_3$ and Bessel functions, SIAM J. Math. Anal. 1(2)(1970), 232-242).