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ON THE COMPUTATIONS OF CONTIGUOUS RELATIONS
FOR 2F1 HYPERGEOMETRIC SERIES

Medhat A. Rakha, Adel K. Ibrahim, and Arjun K. Rathie

Abstract. Contiguous relations for hypergeometric series contain an
enormous amount of hidden information. Applications of contiguous rela-
tions range from the evaluation of hypergeometric series to the derivation
of summation and transformation formulas for such series. In this paper, a
general formula joining three Gauss functions of the form 2F1[a1, a2; a3; z]
with arbitrary integer shifts is presented. Our analysis depends on using
shifted operators attached to the three parameters a1, a2 and a3. We
also, discussed the existence condition of our formula.

1. Introduction

The theory of generalized hypergeometric function is fundamental in the field
of mathematics and mathematical physics. Most of the functions that occur
in the analysis are special cases of the hypergeometric functions. Professor
John Wallis in his work Arithmetica Infinitorum (1655), first used the term
hypergeometric to denote any series which was beyond the ordinary geometric
series. In fact, he studied the series

1 + a + a(a + 1) + a(a + 1)(a + 2) + · · · .

During the next one hundred and fifty years, many other mathematicians
studied similar series, notably Euler, Vandermonde, Hidenberg etc.

In 1812, Gauss defined his famous hypergeometric series as follows

(1.1)
∞∑

n=0

(a1)n(a2)n

(a3)n

zn

n!
= 1 +

a1a2

a3

z

1!
+

a1(a1 + 1)a2(a2 + 1)
a3(a3 + 1)

z2

2!
+ · · · ,

where
(a)n = a(a + 1) · · · (a + n− 1); (a)0 = 1.

The above series is called Gauss series or the ordinary series. It is usually
represented by the symbol 2F1[a1, a2; a3; z], the well known Gauss hypergeo-
metric function. The series given by (1.1) converges when |z| < 1 and when
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z = 1 provided that Re(a3 − a1 − a2) > 0 and also when z = −1 provided that
Re(a3 − a1 − a2) > −1.

In the same paper, Gauss [5], derived his famous summation formula

2F1[a1, a2; a3; 1] =
Γ(a3)Γ(a3 − a1 − a2)
Γ(a3 − a1)Γ(a3 − a2)

provided that Re(a3 − a1 − a2) > 0. If in (1.1), we replace z by z
a2

and let

a2 → ∞, then (a2)n

an
2

zn → zn, and we arrive at the the well known Kummer
series

∞∑
n=0

(a1)n

(a3)n

zn

n!
= 1 +

a1

a3

z

1!
+

a1(a1 + 1)
a3(a3 + 1)

z2

2!
+ · · · .

This series is convergent for all values of a1, a3 and z (real or complex)
excluding a3 = 0,−1,−2, . . . and is represented by the symbol 1F1[a1; a3; z],
the well known confluent hypergeometric functions.

Gauss hypergeometric functions 2F1 and its confluent form 1F1 constitute
the core of special functions and include most of commonly used functions as
their special cases. Thus Legendre’s function, the incomplete beta function, the
complete elliptic functions of the first and second kinds and most of the clas-
sical orthogonal polynomials are particular cases of 2F1. On the other hand,
the confluent hypergeometric function includes, as its special cases, Bessel’s
functions, parabolic cylinder functions, coulomb wave functions etc. Again,
Whittaker functions are also a slightly modified form of the confluent hyperge-
ometric functions.

On account of their usefulness, the functions 2F1 and 1F1 have already been
explored to a considerable extent by a number of eminent scholars notably
Gauss, Kummer, Pincherle, Mellin, Barnes, Slater, Luke, Erdélyi, Exton, etc.

Gauss defined two hypergeometric functions to be contiguous if they have
the same power series variable and if two of the parameters are pairwise equal
and if third pair differs by ±1. He showed that a hypergeometric function
and any two other contiguous to it are linearly related. Since there are six
contiguous to a given 2F1, one get a total of 15 relations. In fact, only four of
the fifteen are really independent as all others may be obtained by elimination
and use of the fact that the 2F1 is symmetric in a1 and a2.

It should be remarked here that whenever hypergeometric functions reduce
to gamma functions, the results are very important from an applicative point.
Only a few summation theorems are available in the literature.

On the other hand, applications of the contiguous relations range from the
evaluation of hypergeometric series to the derivation of the summation and
transformation formulas for such series, they can be used to evaluate hyperge-
ometric function which is contiguous to a hypergeometric series. For this, in
a series of three research papers, Lavoie, et. al [11–13] have obtained a large
number of very interesting results contiguous to Gauss second, Kummer and
Bailey theorems for the series 2F1 and Watson, Dixon and Whipple theorems
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for the series 3F2. These results have been obtained, checked and verified with
the help of Mathematica, a general system of doing mathematics by computer.
Very recently Kummer identity has been generalized by Vidúnas [22], by using
the contiguous relations. For more details about hypergeometric series and
their contiguous relations see [1–4,6–8,10,15–18,23].

In [23], several properties of coefficients of these general contiguous relations
were proved and then used to propose effective ways to compute contiguous
relations. Contiguous relations are also used to make a correspondence be-
tween Lie algebra and special functions, these correspondence yields formulas
of special functions [14].

In [21], contiguous relations were used to establish and prove sharp inequal-
ities between Gaussian hypergeometric function and the power mean. These
results extend known inequalities involving the complete elliptic integral and
the hypergeometric mean.

Recently, a good progress has been done in the direction of further study
of these contiguous relations. In [19], some interesting consequences of the
contiguous relations of 2F1 were proved, while in [9], a new method of the
shifted operators for computing the contiguous relations of 2F1 are introduced.
In [20], a general form of the relation between three gauss function has been
established and with the help of the computer algebra system Mathematica,
two computational examples using the results obtained are presented.

In order to extend the work, our aim, in this paper, is to obtain a general for-
mula joining three Gauss functions of the form 2F1[a1, a2; a3; z] with arbitrary
shifts is presented. Our analysis depends on using shifted operators attached to
the three parameters a1, a2 and a3. In the end, we also discussed the existence
conditions of our formula.

We devote the rest of our introduction to notations and recall the following
helpful definition which introduced in [9].

Definition 1. Let Aαi
i : X → X, (i = 1, 2, 3), where X is the set of all Gauss

functions 2F1[a1, a2; a3; z] with variable z, and parameters a1, a2 and a3 such
that a3 6= 0,−1,−2, . . .. Then

Aα1
1 (C[a1, a2, a3] 2F1[a1, a2; a3; z]) = C[a1 + α1, a2, a3] 2F1[a1 + α1, a2; a3; z],

Aα2
2 (C[a1, a2, a3] 2F1[a1, a2; a3; z]) = C[a1, a2 + α2, a3] 2F1[a1, a2 + α2; a3; z],

Aα3
3 (C[a1, a2, a3] 2F1[a1, a2; a3; z]) = C[a1, a2, a3 + α3] 2F1[a1, a2; a3 + α3; z],

where αi, i = 1, 2, 3 are any integers, and C[a1, a2, a3] is an arbitrary constant
function of a1, a2 and a3 such that for any such operators

Aαi
i A−αi

i (C[a1, a2, a3] 2F1[a1, a2; a3; z]) = I (C[a1, a2, a3] 2F1[a1, a2; a3; z]) .

and I is the identity operator defined on X with

Ik (C[a1, a2, a3] 2F1[a1, a2; a3; z]) = I (C[a1, a2, a3] 2F1[a1, a2; a3; z])

= C[a1, a2, a3] 2F1[a1, a2; a3; z]; ∀F ∈ X.
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2. Preliminaries and tools

Theorem (2) in [9] introduced the five shifted operators of the 1st degree
A−1

3 ,A−1
2 ,A−1

1 ,A2 and A3 in terms of the two operators A1 and I as follows:

A−1
3 =

a1

a3 − 1
A1 +

a3 − a1 − 1
a3 − 1

I; a3 6= 1

A−1
2 =

a1(z − 1)
a2 − a3

A1 +
a1 + a2 − a3

a2 − a3
I; a2 6= a3

A−1
1 =

a1(z − 1)
a1 − a3

A1 +
2a1 + (a2 − a1)z − a3

a1 − a3
I; a1 6= a3

A2 =
a1

a2
A1 +

a2 − a1

a2
I; a2 6= 0

A3 =
a1a3(z − 1)

(a1 − a3)(a3 − a2)z
A1 − a3((a3 − a2)z − a1)

(a1 − a3)(a3 − a2)z
I;

a1 6= a3, a2 6= a3 and z 6= 0.

Lemma (6) in [9], defines two sets each of three dimensional vectors L(j) and
M (j), j ∈ Z as follows:

L(−1) =




a1(z−1)
a1−a3

a1(z−1)
a2−a3

a1
a3−a1


 , L(0) =




0
0
0


 , L(1) =




1
a1
a2

a1a3(z−1)
(a2−a3)(a3−a2)z


 ,

L(2) =




a3+(a1+1−a2)z−2(a1+1)
(a1+1)(z−1)

a1[(a3−2a2−2)+(a2−a1+1)z]
a2(a2+1)(z−1)

a1a3(z−1)(a3+1)[a3+(a1+a2−2a3−1)z]
(a1−a3−1)(a1−a3)(a3−a2)(a3−a2+1)z2




and

M (−1) =




2a1−a3−(a1−a2)z
a1−a3

a1+a2−a3
a2−a3

a3−a1−1)
a3−1


 , M (0) =




1
1
1


 , M (1) =




0
a2−a1

a2
a3[a1−(a3−a2)z]
(a1−a3)(a3−a2)z


 ,

M (2) =




a1−a3+1
(a1+1)(z−1)

(a2−a1)[(a3−2a2−2)+(a2−a1+1)z]+a2(a2−a3+1)
a2(a2+1)(z−1)

a3(a3+1)[[a1−(a3−a2)z][a3−(2a3−a1−a2+1)z]+(a1−a3)(a3−a2)(z−1)z]
(a1−a3−1)(a1−a3)(a3−a2)(a3−a2+1)z2




from which we will have in general

(2.1)
L(j) = Kj−1L

(j−1) + Tj−1L
(j−2),

M (j) = Kj−1M
(j−1) + Tj−1M

(j−2)



 , j ≥ 0
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or

(2.2)
L(j) = T−1

j+1

[
L(j+2) −Kj+1L

(j+1)
]
,

M (j) = T−1
j+1

[
M (j+2) −Kj+1M

(j+1)
]



 , j < 0

where

Kn = DnK0

=

2
64

a3−2(a1+n)+(a1+n−a2)z
(a1+n)(z−1)

0 0

0 a3−2(a2+n)+(a2+n−a1)z
(a2+n)(z−1)

0

0 0 (a3+n)[(a3+n−1)+(a1+a2−2(a3+n)+1)z]
(a3+n−a2)(a1−a3−n)z

3
75 ,

Tn = DnT0 =

2
64

a1+n−a3
(a1+n)(z−1)

0 0

0 a2+n−a3
(a2+n)(z−1)

0

0 0 (a3+n)(a3+n−1)(z−1)
(a3+n−a2)(a1−a3−n)z

3
75 ,

where Dn is the nth shifted matrix defined by

Dn =



An

1 0 0
0 An

2 0
0 0 An

3




and

K0 =




a3−2a1+(a1−a2)z
a1(z−1) 0 0

0 a3−2a2+(a2−a1)z
a2(z−1) 0

0 0 a3[(a3−1)+(a1+a2−2a3+1)z]
(a3−a2)(a1−a3)z


 ,

T0 =




a1−a3
a1(z−1) 0 0

0 a2−a3
a2(z−1) 0

0 0 a3(a3−1)(z−1)
(a3−a2)(a1−a3)z


 .

Moreover, Lemma (7) in [9], asserts the possibility of expressing any shifted
operator with arbitrary degree Aj

i , i = 1, 2, 3 and j ∈ Z as a linear relation of
A1 and I as

(2.3) Aj
i = lij A1 + mij I, i = 1, 2, 3; j ∈ Z,

where lij and mij are the ith row of the two vectors L(j) and M (j) respectively,
defined in (2.1) and (2.2) above.

In addition, relation (2.3), can be written in the matrix form

Xn = L(n)A1 + M (n)I,

where

Xn = Dn



A0

1

A0
2

A0
3


 =



An

1

An
2

An
3


 .

The aim of this paper is to establish a general formula joining three Gauss
functions of the form 2F1[a1, a2; a3; z] with arbitrary integer shifts.
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In order to complete the requirements of our desired result, let us introduce
our next lemma to obtain a general expression for the mixed shifted operator
Aα

1Aβ
2Aγ

3 for some integers α, β and γ in terms of the two operators A1 and I.

Lemma 2. Let A1,A2 and A3 be the linear operators defined in Definition 1.
Then for any integers α, β and γ we have

Aα
1Aβ

2Aγ
3 = G(a1, a2, a3, α, β, γ, z)A1 + H(a1, a2, a3, α, β, γ, z)I : =GA1 + HI,

where [
G
H

]
=

[ A1(l3,γ) l3,γ

A1(m3,γ) m3,γ

] [ A1(l2,β) l2,β

A1(m2,β) m2,β

] [
l1,α

m1,α

]
.

In addition, for r = 0, 1, 2, . . .

Ar
1 (lij (a1, a2, a3, z)) = lij (a1 + r, a2, a3, z)

and
Ar

1 (mij (a1, a2, a3, z)) = mij (a1 + r, a2, a3, z) ,

where lij and mij are the ith row of the vectors L(j) and M (j) respectively.

Proof. From (2.3), we have Aα
1 , Aβ

2 and Aγ
3 as follows

Aα
1 = l1αA1 + m1αI =

[
l1α

m1α

]T [ A1

I
]

,

Aβ
2 = l2βA1 + m2βI =

[
l2β

m2β

]T [ A1

I
]

,

and

Aγ
3 = l3γA1 + m3γI =

[
l3γ

m3γ

]T [ A1

I
]

,

hence, the direct ordered multiplication of Aα
1 , Aβ

2 and Aγ
3 can be obtained as

Aα
1Aβ

2Aγ
3

=
[

l1α

m1α

]T [ A1

I
] [

l2β

m2β

]T [ A1

I
] [

l3γ

m3γ

]T [ A1

I
]

=
[

l1α

m1α

]T [ A1(l2β) A1(m2β)
l2β m2β

] [ A1(l3γ) A1(m3γ)
l3γ m3γ

] [ A1

I
]

.(2.4)

If we write

(2.5) Aα
1Aβ

2Aγ
3 = GA1 + HI =

[
G
H

]T [ A1

I
]

,

then from (2.4) and (2.5), we get

(2.6)
[

G
H

]
=

[ A1(l3,γ) l3,γ

A1(m3,γ) m3,γ

] [ A1(l2,β) l2,β

A1(m2,β) m2,β

] [
l1,α

m1,α

]
.

¤
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It is important to notice that, (2.6) can be generalized as follows
[

Gi

Hi

]
=

[ A1(l3,γi) l3,γi

A1(m3,γi
) m3,γi

] [ A1(l2,βi) l2,βi

A1(m2,βi
) m2,βi

] [
l1,αi

m1,αi

]
, i = 1, 2, 3.

3. Main results

The following theorem is the main theorem of the paper, it gives a general
formula connecting any three arbitrary shifted Gauss functions.

Theorem 3. Let A1,A2 and A3 be the three linear operators defined in Defi-
nition 1. Then the following three Gauss functions

(3.1) 2F1[a1 + αi, a2 + βi; a3 + γi; z], i = 1, 2, 3

are linearly dependent if they satisfy the following recurrence relation

(3.2)

∣∣∣∣∣∣
Aα1

1 Aβ1
2 Aγ1

3 Aα2
1 Aβ2

2 Aγ2
3 Aα3

1 Aβ3
2 Aγ3

3

G1 G2 G3

H1 H2 H3

∣∣∣∣∣∣ 2F1[a1, a2; a3; z] = 0

for some constants Gi and Hi.

Proof. The idea of the proof is to compute the product Aαi
1 Aβi

2 Aγi

3 , and then
using the result of Lemma 2, replacing α, β and γ by αi, βi and γi, respectively,
to get such product in the form

(3.3) Aαi
1 Aβi

2 Aγi

3 = GiA1 + HiI,

where[
Gi

Hi

]
=

[ A1(l3,γi) l3,γi

A1(m3,γi) m3,γi

] [ A1(l2,βi) l2,βi

A1(m2,βi) m2,βi

] [
l1,αi

m1,αi

]

for i = 1, 2, 3.
Now, assuming that the three Gauss function (3.1) are linearly dependent

and hence we have the linear form

(3.4)
3∑

i=1

ci 2F1[a1 + αi, a2 + βi; a3 + γi; z] = 0

or in the operators form as

(3.5)
3∑

i=1

ci

(
Aαi

1 Aβi

2 Aγi

3

)
2F1[a1, a2; a3; z] = 0

for some non-zero coefficients ci, i = 1, 2, 3.
Substituting (3.3) in (3.5), we get

3∑

i=1

ci (GiA1 + HiI) 2F1[a1, a2; a3; z] = 0.
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Consequently, we will have the systems

(3.6)
3∑

i=1

ciGi = 0 and
3∑

i=1

ciHi = 0

which have the non-trivial solution

(3.7) c1 =
∣∣∣∣

G2 G3

H2 H3

∣∣∣∣ , c2 =
∣∣∣∣

G3 G1

H3 H1

∣∣∣∣ and c3 =
∣∣∣∣

G1 G2

H1 H2

∣∣∣∣
substituting in (3.5), we will have

(∣∣∣∣
G2 G3

H2 H3

∣∣∣∣Aα1
1 Aβ1

2 Aγ1
3 +

∣∣∣∣
G3 G1

H3 H1

∣∣∣∣Aα2
1 Aβ2

2 Aγ2
3

+
∣∣∣∣

G1 G2

H1 H2

∣∣∣∣Aα3
1 Aβ3

2 Aγ3
3

)
2F1[a1, a2; a3; z] = 0

from which, we will have the desired formula (3.2) and hence the proof of the
theorem is completed. ¤

The existence of the formula (3.2) of Theorem 3 depends on whether the
system (3.6) has a non trivial solution. Indeed, the system (3.6) has the non
trivial solution (3.7) if and only if the matrix

[
G1 G2 G3
H1 H2 H3

]
is of full rank (= 2).

Clearly, we can introduce any arbitrary recurrence relation by choosing any
arbitrary integer values for the parameter αi’s, βi’s and γi’s where i = 1, 2, 3,
provided that the corresponding matrix

[
G1 G2 G3
H1 H2 H3

]
is of full rank.

With the help of the computer algebra system “Mathematica”, we can easily
do much computations with the help of our method, to establish and verify such
contiguous relations of the form (3.4).

For simplicity, let us write 2F1 [a1, a2; a3; z] as F also 2F1 [a1 ± 1, a2; a3; z] by
F (a+

1 ) or F (a−1 ), 2F1 [a1, a2 ± 1; a3; z] by F (a+
2 ) or F (a−2 ) and 2F1[a1, a2; a3±1;

z] by F (a+
3 ) or F (a−3 ), that means we shall omit the subscripts. As well as, by

means of F (a++
1 ) and F (a−−1 ), we means 2F1 [a1 ± 2, a2; a3; z] respectively, an

so on.
Table 1, presents the description of the following four Gauss contiguous

relations

[2a1 − a3 + (a2 − a1)z] F − a1(1− z)F (a+
1 ) + (a3 − a1)F (a−1 ) = 0,

(a1 − a2)F − a1F (a+
1 ) + a2F (a+

2 ) = 0,

(a1 − a3 + 1)F − a1F (a+
1 ) + (a3 − 1)F (a−3 ) = 0

and

a3(a1 + (a2 − a3)z)F − a1a3(1− z)F (a+
1 ) + (a3 − a1)(a3 − a2)zF (a+

3 ) = 0.

In such relations, two hypergeometric series differ just in one parameter from
the third hypergeometric series, and the difference is 1. It is very important to
notice that a contiguous relation between any three contiguous hypergeometric
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functions can be found by combining linearly a sequence of Gauss contiguous
relations.

Shifts Gi Hi Ci

α2 = 1
α3 = −1

G1 = 1
G2 = a1(z−1)

a1−a3

G3 = 0

H1 = 0
H2 = −a3+a1(z−2)−a2z

a1−a3

H3 = 1

C1 = a1(z−1)
a1−a3

C2 = −1
C3 = 2a1−a3+z(a2−a1)

a1−a3

α2 = 1
β3 = 1

G1 = 0
G2 = 1
G3 = a1

a2

H1 = 1
H2 = 0
H3 = a2−a1

a2

C1 = a2−a1
a2

C2 = a1
a2

C3 = −1

α2 = 1
γ3 = −1

G1 = 0
G2 = 1
G3 = a1

a3−1

H1 = 1
H2 = 0
H3 = a3−a1−1

a3−1

C1 = a3−a1−1
a3−1

C2 = a1
a3−1

C3 = −1

α2 = 1
γ3 = 1

G1 = 0
G2 = 1
G3 = a1a3(z−1)

(a1−a3)(a3−a2)z

H1 = 1
H2 = 0
H3 = a3(a1+(a2−a3)z)

(a1−a3)(a3−a2)z

C1 = a3(a1+(a2−a3)z)
(a1−a3)(a3−a2)z

C2 = a1a3(z−1)
(a1−a3)(a3−a2)z

C3 = −1

Table 1. A sample of Gauss contiguous relations

In Table 2, we presents a sample of 3 contiguous relations since their param-
eters a1, a2 and a3 differ by ±1

(a1 − a2)(a1 − a3)F (a−1 ) + a1(a3 − a1 − a2)F (a+
1 )

+ a2(2a1 − a3 + (a2 − a1)z)F (a+
2 ) = 0,

a1(a3 − 2a2 + (a2 − a1)z)F (a+
1 ) + (a1 − a2)(a2 − a3)F (a−2 )

+ a2(a1 + a2 − a3)F (a+
2 ) = 0

and

(a2 − a3 + 1)(a2 − a3)F (a−2 ) + a2(1− a2 + (a3 − a1 − 1)z)F (a+
2 )

− (a3 − 1)(z(a2 − a1)− 2a2 + a3)F (a−3 ) = 0.

In Table 3, we presents the contiguous relations

(a2−a3+1)F−(2a2−a3+2+(a1−a2−1)z)F (a+
2 )−(a2+1)(z−1)F (a++

2 ) = 0,

(a2−1)(z−1)F−(a3−2a2+2+(a2−a1−1)z)F (a−2 )−(a2−a3−1)F (a− −
2 ) = 0

and

(a1 − a3 + 1)(a2 − a3 + 1)F − (a3 − 1)(2− a3 − (a1 + a2 − 2a3 + 3)z)F (a−3 )

− (a3 − 1)(a3 − 2)(1− z)F (a− −
3 ) = 0

such type of relations called recurrence identities of “consecutive neighbors”,
for which one parameter of one of the contiguous functions differ by ±2, [1,8].
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Shifts Gi Hi Ci

α1 = −1
α2 = 1
β3 = 1

G1 = a1(z−1)
a1−a3

G2 = 1
G3 = a1

a2

H1 = −a3+a1(z−2)−a2z
a1−a3

H2 = 0
H3 = a2−a1

a2

C1 = a2−a1
a2

C2 = a2
1+a1a2−a1a3
a2(a1−a3)

C3 = −2a1+a3+a1z−a2z
a1−a3

α1 = 1
β2 = −1
β3 = 1

G1 = 1
G2 = a1(z−1)

a2−a3

G3 = a1
a2

H1 = 0
H2 = a1+a2−a3

a2−a3

H3 = a2−a1
a2

C1 = −2a1a2+a1a3−a2
1z+a1a2z

a2(a2−a3)

C2 = a1−a2
a2

C3 = a1+a2−a3
a2−a3

β1 = −1
β2 = 1
γ3 = −1

G1 = a1(z−1)
a2−a3

G2 = a1
a2

G3 = a1
a3−1

H1 = a1+a2−a3
a2−a3

H2 = a2−a1
a2

H3 = a3−a1−1
a3−1

C1 = −a1−a1a2+a1a3
a2(a3−1)

C2 = −a1+a1a2+a1z+a2
1z−a1a3z

(a2−a3)(a3−1)

C3 = −2a1a2+a1a3−a2
1z+a1a2z

a2(a2−a3)

Table 2. A sample of 3 contiguous functions

Shifts Gi Hi Ci

β2 = 1
β3 = 2

G1 = 0
G2 = a1

a2

G3 = a1(−2+a3
a2(1+a2)(z−1)

+a2(z−2)+z−a1z)
a2(1+a2)(z−1)

H1 = 1
H2 = a2−a1

a2

H3 = a2(1+a2)(z−1)+a2
1z

a2(1+a2)(z−1)

−a1(−2+a3+2a3(z−1)+z)
a2(1+a2)(z−1)

C1 = a1+a1a2−a1a3
a2(1+a2)(z−1)

C2 = −a1(2+2a2−a3−z
a2(1+a2)(z−1)

+ a1z−a2z)
a2(1+a2)(z−1)

C3 = −a1
a2

β2 = −1
β3 = −2

G1 = 0
G2 = a1(z−1)

a2−a3

G3 = a1(z − 1)
× (−2−a3−a2(z−2)+z+a1z)

(a2−a3−1)(a2−a3)

H1 = 1
H2 = a1+a2−a3

a2−a3

H3 = −a2+(a2−a3)
2+a3+a2

1z
(a2−a3−1)(a2−a3)

+a1(−2+2a2+z−a3(1+z))
(a2−a3−1)(a2−a3)

C1 = −a1+a1a2+2a1z
(a2−a3−1)(a2−a3)

+−2a1a2z−a1z2+a1a2z2

(a2−a3−1)(a2−a3)

C2 = a1(z−1)(−2+2a2−a3
−a2+a2

2+a3−2a2a3+a2
3

+ z+a1z−a2z)
−a2+a2

2+a3−2a2a3+a2
3

C3 = −a1(z−1)
a2−a3

γ2 = −1
γ3 = −2

G1 = 0
G2 = a1

a3−1

G3 = −a1(−2+a3
(2+(a3−3)a3)(z−1)

+ (3+a1+a2)z−2a3z)
(2+(a3−3)a3)(z−1)

H1 = 1
H2 = a3−a1−1

a3−1

H3 = (1+a1−a3)
(2+(−3+a3)a3)(z−1)

× (−2+a3+(2+a1)z−a3z)
(2+(−3+a3)a3)(z−1)

C1 = −a1z(1+a1+a2+a1a2
(−2+a3)(−1+a3)2(z−1)

+
2a3+a1a3+a2a3−a2

3)
(−2+a3)(−1+a3)2(z−1)

C2 = − a1(−2+a3
(2−3a3+a2

3)(z−1)

+ (3+a1+a2−2a3)z)
(2−3a3+a2

3)(z−1)

C3 = − a1
a3−1

Table 3. A sample of 3 recurrence identities of “consecutive
neighbors”
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