• Title/Summary/Keyword: Hyers-Ulam stability of functional equations

Search Result 100, Processing Time 0.02 seconds

GENERALIZED JENSEN'S FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Bae, Jae-Hyeong;Park, Won-Gil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.401-410
    • /
    • 2002
  • We prove the generalized Hyers-Ulam-Rassias stability of generalized Jensen's functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with generalized Jensen's functional equations in Banach algebras.

CYCLIC FUNCTIONAL EQUATIONS IN BANACH MODULES OVER A UNITAL $C^{*}$-ALGEBRA

  • Park, Chun-Gil
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.343-361
    • /
    • 2004
  • We prove the generalized Hyers-Ulam-Rassias stability of cyclic functional equations in Banach modules over a unital $C^{*}$-algebra. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with cyclic functional equations in Banach algebras.

STABILITY OF s-VARIABLE ADDITIVE AND l-VARIABLE QUADRATIC FUNCTIONAL EQUATIONS

  • Govindan, Vediyappan;Pinelas, Sandra;Lee, Jung Rye
    • The Pure and Applied Mathematics
    • /
    • v.29 no.2
    • /
    • pp.179-188
    • /
    • 2022
  • In this paper we investigate the Hyers-Ulam stability of the s-variable additive and l-variable quadratic functional equations of the form $$f\(\sum\limits_{i=1}^{s}x_i\)+\sum\limits_{j=1}^{s}f\(-sx_j+\sum\limits_{i=1,i{\neq}j}^{s}x_i\)=0$$ and $$f\(\sum\limits_{i=1}^{l}x_i\)+\sum\limits_{j=1}^{l}f\(-lx_j+\sum\limits_{i=1,i{\neq}j}^{l}x_i\)=(l+1)$$$\sum\limits_{i=1,i{\neq}j}^{l}f(x_i-x_j)+(l+1)\sum\limits_{i=1}^{l}f(x_i)$ (s, l ∈ N, s, l ≥ 3) in quasi-Banach spaces.

FUZZY STABILITY OF QUADRATIC-CUBIC FUNCTIONAL EQUATIONS

  • Kim, Chang Il;Yun, Yong Sik
    • East Asian mathematical journal
    • /
    • v.32 no.3
    • /
    • pp.413-423
    • /
    • 2016
  • In this paper, we consider the functional equation f(x + 2y) - 3f(x + y) + 3f(x) - f(x - y) - 3f(y) + 3f(-y) = 0 and prove the generalized Hyers-Ulam stability for it when the target space is a fuzzy Banach space. The usual method to obtain the stability for mixed type functional equation is to split the cases according to whether the involving mappings are odd or even. In this paper, we show that the stability of a quadratic-cubic mapping can be obtained without distinguishing the two cases.

A FIXED POINT APPROACH TO THE STABILITY OF QUADRATIC FUNCTIONAL EQUATION

  • Jung, Soon-Mo;Kim, Tae-Soo;Lee, Ki-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.531-541
    • /
    • 2006
  • [ $C\u{a}dariu$ ] and Radu applied the fixed point method to the investigation of Cauchy and Jensen functional equations. In this paper, we adopt the idea of $C\u{a}dariu$ and Radu to prove the Hyers-Ulam-Rassias stability of the quadratic functional equation for a large class of functions from a vector space into a complete ${\gamma}-normed$ space.

PARTITIONED FUNCTIONAL EQUATIONS AND APPROXIMATE ALGEBRA HOMOMORPHISMS

  • Chung, Bo-Hyun;Bae, Jae-Hyeong;Park, Won-Gil
    • Journal of applied mathematics & informatics
    • /
    • v.15 no.1_2
    • /
    • pp.467-474
    • /
    • 2004
  • We prove the generalized Hyers-Ulam-Rassias stability of a partitioned functional equation. It is applied to show the stability of algebra homomorphisms between Banach algebras associated with partitioned functional equations in Banach algebras.