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ADDITIVE ρ-FUNCTIONAL EQUATIONS IN BANACH SPACES

In Whan Jun a, Jeong Pil Seo b and Sungjin Lee c, ∗

Abstract. In this paper, we solve the additive ρ-functional equations

f(x + y + z)− f(x)− f(y)− f(z)

= ρ
(
2f

(x + y + z

2

)
− f(x)− f(y)− f(z)

)
,(0.1)

where ρ is a fixed number with ρ 6= 1, 2, and

f(x + y + z)− f(x)− f(y)− f(z)

= ρ
(
2f

(x + y

2
+ z

)
− f(x)− f(y)− 2f(z)

)
,(0.2)

where ρ is a fixed number with ρ 6= 1.
Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-

functional equations (0.1) and (0.2) in Banach spaces.

1. Introduction

The stability problem of functional equations originated from a question of Ulam
[5] concerning the stability of group homomorphisms.

The functional equation f(x+ y) = f(x)+ f(y) is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.
Hyers [3] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [1] for additive mappings and by
Rassias [4] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [2] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach.

In Section 2, we solve the additive functional equation (0.1) and prove the Hyers-
Ulam stability of the additive functional equation (0.1) in Banach spaces.
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In Section 3, we solve the additive functional equation (0.2) and prove the Hyers-
Ulam stability of the additive functional equation (0.2) in Banach spaces.

Throughout this paper, assume that X is a normed space and that Y is a Banach
space.

2. Additive ρ-functional Equation (0.1)

Let ρ be a number with ρ 6= 1, 2.
We solve and investigate the additive ρ-functional equation (0.1) in normed

spaces.

Lemma 2.1. If a mapping f : X → Y satisfies

f(x + y + z)− f(x)− f(y)− f(z)

= ρ

(
2f

(
x + y + z

2

)
− f(x)− f(y)− f(z)

)
(2.1)

for all x, y, z ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (2.1).
Letting x = y = z = 0 in (2.1), we get −2f(0) = −ρf(0). So f(0) = 0.
Letting y = x and z = 0 in (2.1), we get f(2x)− 2f(x) = 0 and so f(2x) = 2f(x)

for all x ∈ X. Thus

f
(x

2

)
=

1
2
f(x)(2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

f(x + y + z)− f(x)− f(y)− f(z) = ρ

(
2f

(
x + y + z

2

)
− f(x)− f(y)− f(z)

)

= ρ(f(x + y + z)− f(x)− f(y)− f(z))

and so f(x + y + z) = f(x) + f(y) + f(z) for all x, y, z ∈ X. Since f(0) = 0,

f(x + y) = f(x) + f(y)

for all x, y ∈ X. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional equation (2.1) in
Banach spaces.
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Theorem 2.2. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0 and

Ψ(x, y, z) :=
∞∑

j=1

2jϕ
( x

2j
,

y

2j
,

z

2j

)
< ∞,(2.3)

∥∥∥∥f(x + y + z)− f(x)− f(y)− f(z)

− ρ

(
2f

(
x + y + z

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥ ≤ ϕ(x, y, z)(2.4)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 1
2
Ψ(x, x, 0)(2.5)

for all x ∈ X.

Proof. Letting y = x and z = 0 in (2.4), we get

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x, 0)(2.6)

for all x ∈ X. So
∥∥∥f(x)− 2f

(x

2

)∥∥∥ ≤ ϕ
(x

2
,
y

2
, 0

)

for all x ∈ X. Hence

∥∥∥2lf
( x

2l

)
− 2mf

( x

2m

)∥∥∥ ≤
m−1∑

j=l

∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥

≤
m−1∑

j=l

2jϕ
( x

2j+1
,

x

2j+1
, 0

)
(2.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7)
that the sequence {2kf( x

2k )} is Cauchy for all x ∈ X. Since Y is a Banach space,
the sequence {2kf( x

2k )} converges. So one can define the mapping A : X → Y by

A(x) := lim
k→∞

2kf
( x

2k

)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m →∞ in (2.7), we get
(2.5).
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Now, let T : X → Y be another additive mapping satisfying (2.5). Then we have

‖A(x)− T (x)‖ =
∥∥∥2qA

( x

2q

)
− 2qT

( x

2q

)∥∥∥

≤
∥∥∥2qA

( x

2q

)
− 2qf

( x

2q

)∥∥∥ +
∥∥∥2qT

( x

2q

)
− 2qf

( x

2q

)∥∥∥

≤ 2qΨ
( x

2q
,

x

2q
, 0

)
,

which tends to zero as q →∞ for all x ∈ X. So we can conclude that A(x) = T (x)
for all x ∈ X. This proves the uniqueness of A.

It follows from (2.3) and (2.4) that∥∥∥∥A(x + y + z)−A(x)−A(y)−A(z)− ρ
(
2A

(
x + y + z

2

)

−A(x)−A(y)−A(z)
)∥∥∥∥

= lim
n→∞

∥∥∥∥2n

(
f

(
x + y + z

2n

)
− f

( x

2n

)
− f

( y

2n

)
− f

( z

2n

)

−ρ

(
2f

(
x + y + z

2n+1

)
− f

( x

2n

)
− f

( y

2n

)
− f

( z

2n

)))∥∥∥∥

≤ lim
n→∞ 2nϕ

( x

2n
,

y

2n
, 0

)
= 0

for all x, y, z ∈ X. So

A(x + y)−A(x)−A(y)−A(z) = ρ

(
2A

(
x + y + z

2

)
−A(x)−A(y)−A(z)

)

for all x, y, z ∈ X. By Lemma 2.1, the mapping A : X → Y is additive. ¤

Corollary 2.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying f(0) = 0 and∥∥∥∥f(x + y + z)− f(x)− f(y)− f(z)

− ρ

(
2f

(
x + y + z

2

)
− f(x)− f(y)− f(z)

)∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)(2.8)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 2θ

2r − 2
‖x‖r

for all x ∈ X.

Proof. Letting ϕ(x, y, z) := θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 2.2, we get the desired
result. ¤
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Theorem 2.4. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0, (2.4) and

Ψ(x, y, z) :=
∞∑

j=0

1
2j

ϕ(2jx, 2jy, 2jz) < ∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 1
2
Ψ(x, x, 0)(2.9)

for all x ∈ X.

Proof. It follows from (2.6) that∥∥∥∥f(x)− 1
2
f(2x)

∥∥∥∥ ≤
1
2
ϕ(x, x, 0)

for all x ∈ X. Hence
∥∥∥∥

1
2l

f(2lx)− 1
2m

f(2mx)
∥∥∥∥ ≤

m−1∑

j=l

∥∥∥∥
1
2j

f
(
2jx

)− 1
2j+1

f
(
2j+1x

)∥∥∥∥

≤
m−1∑

j=l

1
2j+1

ϕ(2jx, 2jx, 0)(2.10)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from
(2.10) that the sequence { 1

2n f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y

is complete, the sequence { 1
2n f(2nx)} converges. So one can define the mapping

A : X → Y by

A(x) := lim
n→∞

1
2n

f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (2.10), we
get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2. ¤

Corollary 2.5. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying f(0) = 0 and (2.8). Then there exists a unique additive
mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2r
‖x‖r

for all x ∈ X.

Proof. Letting ϕ(x, y, z) := θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 2.4, we get the desired
result. ¤
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3. Additive ρ-functional Equation (0.2)

Let ρ be a number with ρ 6= 1.
We solve and investigate the additive ρ-functional equation (0.2) in normed

spaces.

Lemma 3.1. If a mapping f : X → Y satisfies

f(x + y + z)− f(x)− f(y)− f(z)

= ρ

(
2f

(
x + y

2
+ z

)
− f(x)− f(y)− 2f(z)

)
(3.1)

for all x, y, z ∈ X, then f : X → Y is additive.

Proof. Assume that f : X → Y satisfies (3.1).
Letting x = y = z = 0 in (2.1), we get −2f(0) = −2ρf(0). So f(0) = 0.
Letting y = x and z = 0 in (2.1), we get f(2x)− 2f(x) = 0 and so f(2x) = 2f(x)

for all x ∈ X. Thus

f
(x

2

)
=

1
2
f(x)(3.2)

for all x ∈ X.
It follows from (3.1) and (3.2) that

f(x + y)− f(x)− f(y) = ρ

(
2f

(
x + y

2

)
− f(x)− f(y)

)

= ρ(f(x + y)− f(x)− f(y))

and so f(x + y) = f(x) + f(y) for all x, y ∈ X. ¤

We prove the Hyers-Ulam stability of the additive ρ-functional equation (3.1) in
Banach spaces.

Theorem 3.2. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0 and

Ψ(x, y, z) :=
∞∑

j=1

2jϕ
( x

2j
,

y

2j
,

z

2j

)
< ∞,

∥∥∥∥f(x + y + z)− f(x)− f(y)− f(z)

− ρ

(
2f

(
x + y

2
+ z

)
− f(x)− f(y)− 2f(z)

)∥∥∥∥ ≤ ϕ(x, y, z)(3.3)
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for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 1
2
Ψ(x, x, 0)

for all x ∈ X.

Proof. Letting y = x and z = 0 in (3.3), we get

‖f(2x)− 2f(x)‖ ≤ ϕ(x, x, 0)(3.4)

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.2. ¤

Corollary 3.3. Let r > 1 and θ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying f(0) = 0 and
∥∥∥∥f(x + y + z)− f(x)− f(y)− f(z)

− ρ

(
2f

(
x + y

2
+ z

)
− f(x)− f(y)− 2f(z)

) ∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r + ‖z‖r)(3.5)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 2θ

2r − 2
‖x‖r

for all x ∈ X.

Proof. Letting ϕ(x, y, z) := θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 3.2, we get the desired
result. ¤

Theorem 3.4. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0, (3.3) and

Ψ(x, y, z) :=
∞∑

j=0

1
2j

ϕ(2jx, 2jy, 2jz) < ∞

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ 1
2
Ψ(x, x, 0)

for all x ∈ X.
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Proof. It follows from (3.4) that∥∥∥∥f(x)− 1
2
f(2x)

∥∥∥∥ ≤
1
2
ϕ(x, x, 0)

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 2.2 and 2.4. ¤

Corollary 3.5. Let r < 1 and θ be nonnegative real numbers, and let f : X → Y

be a mapping satisfying f(0) = 0 and (3.5). Then there exists a unique additive
mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 2θ

2− 2r
‖x‖r

for all x ∈ X.

Proof. Letting ϕ(x, y, z) := θ(‖x‖r +‖y‖r +‖z‖r) in Theorem 3.4, we get the desired
result. ¤
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