• Title/Summary/Keyword: Hydrothermal stability

Search Result 99, Processing Time 0.023 seconds

Solubility Study of Nickel Ferrite in Boric Acid Using a Flow-Through Autoclave System under High Temperature and High Pressure

  • Park, Yong Joon;Choi, Ke-Chon;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.554-558
    • /
    • 2016
  • The solubility of nickel ferrite in an aqueous solution of boric acid was studied by varying the pH at the temperatures ranging from $25^{\circ}C$ to $320^{\circ}C$. A flow-through autoclave system was specially designed and fabricated to measure the solubility of Fe in hydrothermal solutions under high temperature and pressure. The performance of this flow-through system was directly compared with the conventional static state technique using a batch-type autoclave system. The stability of fluid velocity for the flow-through autoclave system was verified prior to the solubility measurement. The influence of chemical additives, such as boric acid and $H_2$, on the solubility of nickel ferrite was also evaluated.

Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage

  • An, Geon-Hyoung;Kim, Hyeonjin;Ahn, Hyo-Jin
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.146-152
    • /
    • 2018
  • Due to their excellent mechanical durability and high electrical conductivity, carbon and silicon composites are potentially suitable anode materials for Li-ion batteries with high capacity and long lifespan. Nevertheless, the limitations of the composites include their poor ionic diffusion at high current densities during cycling, which leads to low ultrafast performance. In the present study, seeking to improve the ionic diffusion using hydrothermal method, electrospinning, and carbonization, we demonstrate the unique design of excavated carbon and silicon composites (EC/Si). The outstanding energy storage performance of EC/Si electrode provides a discharge specific capacity, impressive rate performance, and ultrafast cycling stability.

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri;Kim, YooJin
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.195-200
    • /
    • 2019
  • Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.

Synthesis and Characterizations of Manganese and Iron Dopped Titania Pigment (망간과 철이 도핑된 이산화티탄 안료의 합성과 특성)

  • Kang, Kuk-Hyoun;Choi, Ji-Sik;Lee, Jin-Hee;Lee, Dong-Kyu
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.393-401
    • /
    • 2012
  • Inorganic pigment is excellent at stability to human body and compatibility with different materials and has been used in a variety of field such as cosmetics, printing inks, paints, and construction materials for improving the aesthetic features. In this paper, hydrothermal synthesis method was used to prepare the manganese and iron dopped with titania pigment. As process parameters, the amount of manganese precursor and iron precursor, and calcined temperature was changed. Optimum amounts of manganese and iron dopped with titania precursor to give excellent color index was manganese 1.0wt% and iron 1.5wt% for dopped titania, and Optimum calcination temperature was $550^{\circ}C$. The synthesized pigments were analyzed by XRD, SEM, EDS, Spectrophotometer and UV-Vis Spectrometer.

Formation of Illite in the Natural $K_2O-Al_2O_3-SiO_2-H_2O$ System in the Hydrothermal Clay Deposit of the Bobae Mine, Korea (보배광산의 열수변질 점토광상의 $K_2O-Al_2O_3-SiO_2-H_2O$계에서의 일라이트 형성)

  • Choo, Chang-Oh;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.1
    • /
    • pp.6-13
    • /
    • 1992
  • Thermodynamic data of mineral reactions were used to construct a phase diagram for the formation of illite from andalusite at one bar and 325${\circ}C$ in the hydrothermal alteration. Based on chemical compositions, the free energy of formation of illite coexisting with andalusite was calculated by assuming the ideal mixing ina bunary system consisting of muscovite and pyrophyllite components. For illite with structural formula $K_{0.86}Al_{2.93}Si_{3.03}O_{10}(OH)_2$, its free energy of formation is -1147.727 kcal/mole at the condition under consideration. The stability area of illite is more narrow than that of end-member muscovite and prefers lower activity of silica. Illite was formed by hydration of andalusite while pyrophyllite decomposed. Illitization took place preferentially at margin and/or along fractures of andalusite.

  • PDF

Adsorption of Nitrogen Dioxide on Transition-Metal-Oxide-Incorporated Hydrotalcites (전이금속 산화물이 고정된 하이드로탈사이트에 이산화질소 흡착)

  • Park, Ji Won;Seo, Gon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1029-1038
    • /
    • 2008
  • Transition-metal-oxide-incorporated hydrotalcites were prepared by hydrothermal reaction of their synthetic mixtures containing precursors of transition metal oxides and their properties of nitrogen dioxide adsorption was investigated. The dispersion of transition metal oxides on the hydrotalcites and the amount and the state of nitrogen dioxide adsorbed on them were examined by using XRD, SEM, XPS, nitrogen adsorption, a gravimetric adsorption system, FT-IR spectroscopy and temperature programmed desorption techniques. Transition metal oxides were mainly incorporated on their surface and the incorporation of iron and nickel oxides to the hydrotalcites increased their adsorption amounts of nitrogen dioxide. The dispersion of iron oxide on the hydrotalcites was effective in increasing the amount of nitrogen dioxide adsorption, while too much amount of iron oxide incorporation reduced the amount of nitrogen dioxide adsorption due to masking of surface basic sites by agglomerated iron oxide. Although the incorporation of iron oxide to the hydrotalcites lowered the adsorption strength of nitrogen dioxide, the incorporation of it with a proper amount enhanced the amount of nitrogen dioxide adsorption and the stability against the hydrothermal treatment.

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries (수열 합성법에 의해 제조된 주석-안티몬 황화물계 나노복합체 기반 나트륨이온전지용 음극의 전기화학적 특성)

  • So Hyeon Park;Su Hwan Jeong;Suyoon Eom;Sang Jun Lee;Joo-Hyung Kim
    • Korean Journal of Materials Research
    • /
    • v.32 no.12
    • /
    • pp.545-552
    • /
    • 2022
  • Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.

Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options (질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

Effect of EuO$_3$addition on hydrothermal stability of t-ZrO$_2$/Al$_2$O$_3$composites (t-ZrO$_2$/Al$_2$O$_3$복합체 상 안정성에 대한 Eu$_2$O$_3$첨가 효과)

  • 이득용;김대준;최성갑;이명현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.233-238
    • /
    • 2000
  • t-$ZrO_2/Al_2O_3$composites having a superior biocompatability and phase stability were prepared by adding 0~4 mol% of $Eu_2O_3$and sintered for 1 h at $1600^{\circ}C$ to evaluate phase stability, chromaticity and mechanical properties of the composites. No tetragonal to monoclinic phase transformation was observed for the composites containing $Eu_2O_3$after heat treatment for 20 h at $180^{\circ}C$ under 3.5 MPa water vapor pressure condition. As $Eu_2O_3$content increased, the color of the composites was changed from a slight white ivory to a light pink. The strength and the fracture toughness of the composites containing $Eu_2O_3$were above 620 MPa and 7.6 MPa.$m^{1/2}$, respectively, when $Eu_2O_3$was added up to 3 mol%.

  • PDF