Browse > Article
http://dx.doi.org/10.1016/j.jiec.2018.07.039

Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage  

An, Geon-Hyoung (Program of Materials Science and Engineering, Convergence Institute of Biomedical Engineering and Biomaterials)
Kim, Hyeonjin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Ahn, Hyo-Jin (Program of Materials Science and Engineering, Convergence Institute of Biomedical Engineering and Biomaterials)
Publication Information
Journal of Industrial and Engineering Chemistry / v.68, no., 2018 , pp. 146-152 More about this Journal
Abstract
Due to their excellent mechanical durability and high electrical conductivity, carbon and silicon composites are potentially suitable anode materials for Li-ion batteries with high capacity and long lifespan. Nevertheless, the limitations of the composites include their poor ionic diffusion at high current densities during cycling, which leads to low ultrafast performance. In the present study, seeking to improve the ionic diffusion using hydrothermal method, electrospinning, and carbonization, we demonstrate the unique design of excavated carbon and silicon composites (EC/Si). The outstanding energy storage performance of EC/Si electrode provides a discharge specific capacity, impressive rate performance, and ultrafast cycling stability.
Keywords
Li-ion battery; Excavated carbon; Mesoporous structure; Silicon; Ultrafast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capigli, J. Power Sources 257 (2014) 421.   DOI
2 N. Nitta, G. Yushin, Part. Part. Syst. Char. 31 (2014) 317.   DOI
3 B.-H. Kim, J.-H. Kim, J.-G. Kim, J.S. Im, C.W. Lee, S. Kim, J. Ind. Eng. Chem. 45 (2017) 99.   DOI
4 S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, S.-H. Moon, D.-H. Kwak, S. Hong, K.-W. Park, J. Ind. Eng. Chem. 49 (2017) 105.   DOI
5 L. Hamenu, A. Madzvamuse, L. Mohammed, Y.M. Lee, J.M. Ko, C.Y. Bon, S.J. Kim, W.I. Cho, Y.G. Baek, J. Park, J. Ind. Eng. Chem. 53 (2017) 241.   DOI
6 B. Hou, D. Parker, G.P. Kissling, J.A. Jones, D. Cherns, D.J. Fermin, J. Phys. Chem. C 117 (2013) 6814.
7 G.-H. An, H.-J. Ahn, Carbon 65 (2013) 87.   DOI
8 G.-H. An, J.I. Sohn, H.-J. Ahn, J. Mater. Chem. A 4 (2016) 2049.   DOI
9 G.-H. An, H.-J. Ahn, W.-K. Hong, J. Power Sources 274 (2015) 536.   DOI
10 P.R. Ilango, R. Gnanamuthu, Y.N. Jo, C.W. Lee, J. Ind. Eng. Chem. 36 (2016) 121.   DOI
11 G.-H. An, D.-Y. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 8 (2016) 19466.   DOI
12 G.-H. An, B.-R. Koo, H.-J. Ahn, Phys. Chem. Chem. Phys. 18 (2016) 6587.   DOI
13 Y.-W. Lee, D.-M. Kim, S.-J. Kim, M.-C. Kim, H.-S. Choe, K.-H. Lee, J.I. Sohn, S.N. Cha, J.M. Kim, K.-W. Park, ACS Appl. Mater. Interfaces 8 (2016) 7022.   DOI
14 Y. Yi, G.-H. Lee, J.-C. Kim, H.-W. Shim, D.-W. Kim, Chem. Eng. J. 327 (2017) 297.   DOI
15 G.-H. An, H.-J. Ahn, J. Power Sources 272 (2014) 828.   DOI
16 Y. Li, B. Guo, L. Ji, Z. Lin, G. Xu, Y. Liang, S. Zhang, O. Toprakci, Y. Hu, M. Alcoutlabi, X. Zhang, Carbon 51 (2013) 185.   DOI
17 B.-S. Lee, S.-B. Son, K.-M. Park, J.-H. Seo, S.-H. Lee, I.-S. Choi, K.-H. Oh, W.-R. Yu, J. Power Sources 206 (2012) 267.   DOI
18 K. Fu, Y. Lu, M. Dirican, C. Chen, M. Yanilmaz, Q. Shi, P.D. Bradford, X. Zhang, Nanoscale 6 (2014) 7489.   DOI
19 N.T. Hieu, J. Suk, D.W. Kim, O.H. Chung, J.S. Park, Y. Kang, Synth. Met. 198 (2014) 36.   DOI
20 L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, Nano Energy 2 (2013) 361.   DOI
21 L. Ji, X. Zhang, Energy Environ. Sci. 3 (2010) 124.   DOI
22 M. Dirican, O. Yildiz, Y. Lu, X. Fang, H. Jiang, H. Kizil, X. Zhang, Electrochim. Acta 169 (2015) 52.   DOI
23 X. Fan, L. Zou, Y.-P. Zheng, F.-Y. Kang, W.-C. Shen, Electrochem. Solid State Lett. 12 (2009) A199.   DOI
24 M. Armand, J.-M. Tarascon, Nature 451 (2008) 652.   DOI
25 Y. Li, Y. Sun, G. Xu, Y. Lu, S. Zhang, L. Xue, J.S. Jur, X. Zhang, J. Mater. Chem. A 2 (2014) 11417.   DOI
26 Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, Z. Wang, J. Zhong, Electrochim. Acta 102 (2013) 246.   DOI
27 M.-S. Wang, W.-L. Song, J. Wang, L.-Z. Fan, Carbon 81 (2015) 337.
28 Z.-L. Xu, B. Zhang, J.-K. Kim, Nano Energy 6 (2014) 27.   DOI
29 B.-S. Lee, S.-B. Son, J.-H. Seo, K.-M. Park, G. Lee, S.-H. Lee, K.H. Oh, J.-P. Ahn, W.-R. Yu, Nanoscale 5 (2013) 4790.   DOI
30 B.-S. Lee, H.-S. Yang, H. Jung, S.-Y. Jeon, C. Jung, S.-W. Kim, J. Bae, C.-L. Choong, J. Im, U.-I. Chung, J.-J. Park, W.-R. Yu, Nanoscale 6 (2014) 5989.   DOI
31 G.-H. An, H. Kim, H.-J. Ahn, ACS Appl. Mater. Interfaces 10 (2018) 6235.   DOI
32 P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930.   DOI
33 J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1 (2016) 16013.   DOI
34 J.-H. Kim, M.-J. Jung, M.-J. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 61 (2018) 368.   DOI
35 S. Ko, C.W. Lee, J.S. Im, J. Ind. Eng. Chem. 36 (2016) 125.   DOI
36 G.-H. An, D.-Y. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 9 (2017) 12478.   DOI
37 D.-S. Lee, Y.-H. Choi, H.-D. Jeong, J. Ind. Eng. Chem. 53 (2017) 82.   DOI
38 G.-H. An, D.-Y. Lee, Y.-J. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 8 (2016) 30264.   DOI
39 G.-H. An, H.-J. Ahn, J. Alloys Compd. 710 (2017) 274.   DOI
40 M. Choi, W. William, J. Hwang, D. Yoon, J. Kim, J. Ind. Eng. Chem. 59 (2018) 160.   DOI
41 C. Kim, D. Verma, D.H. Nam, W. Chang, J. Kim, J. Ind. Eng. Chem. 52 (2017) 260.   DOI
42 H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21 (2009) 4593.   DOI
43 Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 44 (2015) 5926.   DOI
44 J. Yang, Y.X. Wang, S.L. Chou, R. Zhang, Y. Xu, J. Fan, W.X. Zhang, H.K. Liu, D. Zhao, S.X. Dou, Nano Energy 18 (2015) 133.   DOI
45 Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X.-s. Zheng, F.-F. Cao, Y.-G. Guo, Nano Energy 25 (2016) 120.   DOI
46 J. Shin, K. Park, W.-H. Ryu, J.-W. Jung, Il-Doo Kim, Nanoscale 6 (2014) 12718.   DOI
47 Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, J. Power Sources 298 (2015) 130.   DOI