DOI QR코드

DOI QR Code

Study of Fabrication and Improvement of Mechanical Properties of Mg-based Inorganic Fiber using Reflux Process and Silica Coating

  • Yu, Ri (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, YooJin (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2019.04.23
  • Accepted : 2019.06.18
  • Published : 2019.06.28

Abstract

Whisker-type magnesium hydroxide sulfate hydrate ($5Mg(OH)_2{\cdot}MgSO_4{\cdot}3H_2O$, abbreviated 513 MHSH), is used in filler and flame-retardant composites based on its hydrate phase and its ability to undergo endothermic dehydration in fire conditions, respectively. In general, the length of whiskers is determined according to various synthetic conditions in a hydrothermal reaction with high temperature (${\sim}180^{\circ}C$). In this work, high-quality 513 MHSH whiskers are synthesized by controlling the concentration of the raw material in ambient conditions without high pressure. Particularly, the concentration of the starting material is closely related to the length, width, and purity of MHSH. In addition, a ceramic-coating system is adopted to enhance the mechanical properties and thermal stability of the MHSH whiskers. The physical properties of the silica-coated MHSH are characterized by an abrasion test, thermogravimetric analysis, and transmission electron microscopy.

Keywords

References

  1. H. Lu, Y. Hu, L. Yang, Z. Wang, Z. Chen and W. Fan: Macromol. Mater. Eng., 289 (2004) 984. https://doi.org/10.1002/mame.200400165
  2. S. Fang, Y. Hu, L. Song, J. Zhan and Q. He: J. Mater. Sci., 43 (2008) 1057. https://doi.org/10.1007/s10853-007-2241-2
  3. Y. Tao, G. Shiyang, Z. Lixia, X. Shuping and Y. Kaibei: J. Mol. Struct., 616 (2002) 247. https://doi.org/10.1016/S0022-2860(02)00347-2
  4. E. Hamada, N. Ishizawa, F. Marumo, K. Ohsumi, Y. Shimizugawa, K. Reizen and T. Matunami: Acta Cryst. B, 52 (1996) 266. https://doi.org/10.1107/S0108768195014443
  5. Y. Ding, G. Zhang, S. Zhang, X. Huang, W. Yu and Y. Qian: Chem. Mater., 12 (2000) 2845. https://doi.org/10.1021/cm000249f
  6. H. Lu, Y. Hu, L. Yang, Z. Wang, Z. Chen and W. Fan: Macromol. Mater. Eng., 289 (2004) 984. https://doi.org/10.1002/mame.200400165
  7. H. Lu, Y. Hu, J. Xiao, Z. Wang, Z. Chen and W. Fan: J. Mater. Sci., 41 (2006) 363. https://doi.org/10.1007/s10853-005-2374-0
  8. J. Lv, L. Qiu and B. Qu: Nanotechnology, 15 (2004) 1576. https://doi.org/10.1088/0957-4484/15/11/035
  9. C. Cao, X. Li, L. Feng, Z. Xiang and D. Zhang: Chem. Eng. J., 150 (2009) 551. https://doi.org/10.1016/j.cej.2008.12.029
  10. X. T. Sun, W. T. Shi, L. Xiang and W. C. Zhu: Nanoscale Res. Lett., 3 (2008) 386. https://doi.org/10.1007/s11671-008-9171-z
  11. J. Lv, L. Qiu and B. Qu: J. Crystal Growth, 267 (2004) 676. https://doi.org/10.1016/j.jcrysgro.2004.04.034
  12. X. Yan, D. Xu and D. Xue: Acta Mater., 55 (2007) 5747. https://doi.org/10.1016/j.actamat.2007.06.023
  13. R. Yu, J. H. Pee, H. T. Kim, K. J. Kim, Y. W. Kim, W. Kim and Y. Kim: J. Korean Powder Metall. Inst., 18 (2011) 283. https://doi.org/10.4150/KPMI.2011.18.3.283
  14. R. Yu, J. H. Pee, H. T. Kim, K. J. Kim, Y. W. Kim and Y. Kim: Key Eng. Mater., 512-515 (2012) 91. https://doi.org/10.4028/www.scientific.net/KEM.512-515.91
  15. R. Yu and Y. Kim: J. Nanosci. Nanotechnol., 14 (2014) 8711. https://doi.org/10.1166/jnn.2014.9968
  16. R. Yu, J. H. Pee, K. J. Kim and Y. Kim: Chem. Lett., 40 (2011) 1400. https://doi.org/10.1246/cl.2011.1400