DOI QR코드

DOI QR Code

Excavated carbon with embedded Si nanoparticles for ultrafast lithium storage

  • An, Geon-Hyoung (Program of Materials Science and Engineering, Convergence Institute of Biomedical Engineering and Biomaterials) ;
  • Kim, Hyeonjin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Program of Materials Science and Engineering, Convergence Institute of Biomedical Engineering and Biomaterials)
  • Received : 2018.03.24
  • Accepted : 2018.07.26
  • Published : 2018.12.25

Abstract

Due to their excellent mechanical durability and high electrical conductivity, carbon and silicon composites are potentially suitable anode materials for Li-ion batteries with high capacity and long lifespan. Nevertheless, the limitations of the composites include their poor ionic diffusion at high current densities during cycling, which leads to low ultrafast performance. In the present study, seeking to improve the ionic diffusion using hydrothermal method, electrospinning, and carbonization, we demonstrate the unique design of excavated carbon and silicon composites (EC/Si). The outstanding energy storage performance of EC/Si electrode provides a discharge specific capacity, impressive rate performance, and ultrafast cycling stability.

Keywords

Acknowledgement

Grant : Development of ceramic/carbon convergence and integration anode material for 10C fast charging Lithium ion battery

Supported by : Ministry of Trade, Industry & Energy (MOTIE)

References

  1. M. Armand, J.-M. Tarascon, Nature 451 (2008) 652. https://doi.org/10.1038/451652a
  2. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47 (2008) 2930. https://doi.org/10.1002/anie.200702505
  3. J.W. Choi, D. Aurbach, Nat. Rev. Mater. 1 (2016) 16013. https://doi.org/10.1038/natrevmats.2016.13
  4. J.-H. Kim, M.-J. Jung, M.-J. Kim, Y.-S. Lee, J. Ind. Eng. Chem. 61 (2018) 368. https://doi.org/10.1016/j.jiec.2017.12.036
  5. G.-H. An, H. Kim, H.-J. Ahn, ACS Appl. Mater. Interfaces 10 (2018) 6235. https://doi.org/10.1021/acsami.7b15950
  6. S. Ko, C.W. Lee, J.S. Im, J. Ind. Eng. Chem. 36 (2016) 125. https://doi.org/10.1016/j.jiec.2016.01.036
  7. G.-H. An, D.-Y. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 9 (2017) 12478. https://doi.org/10.1021/acsami.7b01286
  8. D.-S. Lee, Y.-H. Choi, H.-D. Jeong, J. Ind. Eng. Chem. 53 (2017) 82. https://doi.org/10.1016/j.jiec.2017.04.003
  9. G.-H. An, D.-Y. Lee, Y.-J. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 8 (2016) 30264. https://doi.org/10.1021/acsami.6b10868
  10. G.-H. An, H.-J. Ahn, J. Alloys Compd. 710 (2017) 274. https://doi.org/10.1016/j.jallcom.2017.03.273
  11. M. Choi, W. William, J. Hwang, D. Yoon, J. Kim, J. Ind. Eng. Chem. 59 (2018) 160. https://doi.org/10.1016/j.jiec.2017.10.020
  12. C. Kim, D. Verma, D.H. Nam, W. Chang, J. Kim, J. Ind. Eng. Chem. 52 (2017) 260. https://doi.org/10.1016/j.jiec.2017.03.055
  13. H. Li, Z. Wang, L. Chen, X. Huang, Adv. Mater. 21 (2009) 4593. https://doi.org/10.1002/adma.200901710
  14. Y. Tang, Y. Zhang, W. Li, B. Ma, X. Chen, Chem. Soc. Rev. 44 (2015) 5926. https://doi.org/10.1039/C4CS00442F
  15. S. Goriparti, E. Miele, F.D. Angelis, E.D. Fabrizio, R.P. Zaccaria, C. Capigli, J. Power Sources 257 (2014) 421. https://doi.org/10.1016/j.jpowsour.2013.11.103
  16. N. Nitta, G. Yushin, Part. Part. Syst. Char. 31 (2014) 317. https://doi.org/10.1002/ppsc.201300231
  17. B.-H. Kim, J.-H. Kim, J.-G. Kim, J.S. Im, C.W. Lee, S. Kim, J. Ind. Eng. Chem. 45 (2017) 99. https://doi.org/10.1016/j.jiec.2016.09.008
  18. S.-J. Kim, M.-C. Kim, S.-B. Han, G.-H. Lee, H.-S. Choe, S.-H. Moon, D.-H. Kwak, S. Hong, K.-W. Park, J. Ind. Eng. Chem. 49 (2017) 105. https://doi.org/10.1016/j.jiec.2017.01.014
  19. L. Hamenu, A. Madzvamuse, L. Mohammed, Y.M. Lee, J.M. Ko, C.Y. Bon, S.J. Kim, W.I. Cho, Y.G. Baek, J. Park, J. Ind. Eng. Chem. 53 (2017) 241. https://doi.org/10.1016/j.jiec.2017.04.031
  20. B. Hou, D. Parker, G.P. Kissling, J.A. Jones, D. Cherns, D.J. Fermin, J. Phys. Chem. C 117 (2013) 6814.
  21. G.-H. An, H.-J. Ahn, Carbon 65 (2013) 87. https://doi.org/10.1016/j.carbon.2013.08.002
  22. G.-H. An, J.I. Sohn, H.-J. Ahn, J. Mater. Chem. A 4 (2016) 2049. https://doi.org/10.1039/C5TA10067D
  23. G.-H. An, H.-J. Ahn, W.-K. Hong, J. Power Sources 274 (2015) 536. https://doi.org/10.1016/j.jpowsour.2014.10.086
  24. P.R. Ilango, R. Gnanamuthu, Y.N. Jo, C.W. Lee, J. Ind. Eng. Chem. 36 (2016) 121. https://doi.org/10.1016/j.jiec.2016.01.037
  25. G.-H. An, D.-Y. Lee, H.-J. Ahn, ACS Appl. Mater. Interfaces 8 (2016) 19466. https://doi.org/10.1021/acsami.6b05307
  26. G.-H. An, B.-R. Koo, H.-J. Ahn, Phys. Chem. Chem. Phys. 18 (2016) 6587. https://doi.org/10.1039/C6CP00035E
  27. Y.-W. Lee, D.-M. Kim, S.-J. Kim, M.-C. Kim, H.-S. Choe, K.-H. Lee, J.I. Sohn, S.N. Cha, J.M. Kim, K.-W. Park, ACS Appl. Mater. Interfaces 8 (2016) 7022. https://doi.org/10.1021/acsami.5b12284
  28. Y. Yi, G.-H. Lee, J.-C. Kim, H.-W. Shim, D.-W. Kim, Chem. Eng. J. 327 (2017) 297. https://doi.org/10.1016/j.cej.2017.06.103
  29. G.-H. An, H.-J. Ahn, J. Power Sources 272 (2014) 828. https://doi.org/10.1016/j.jpowsour.2014.09.032
  30. B.-S. Lee, S.-B. Son, K.-M. Park, J.-H. Seo, S.-H. Lee, I.-S. Choi, K.-H. Oh, W.-R. Yu, J. Power Sources 206 (2012) 267. https://doi.org/10.1016/j.jpowsour.2012.01.120
  31. K. Fu, Y. Lu, M. Dirican, C. Chen, M. Yanilmaz, Q. Shi, P.D. Bradford, X. Zhang, Nanoscale 6 (2014) 7489. https://doi.org/10.1039/C4NR00518J
  32. N.T. Hieu, J. Suk, D.W. Kim, O.H. Chung, J.S. Park, Y. Kang, Synth. Met. 198 (2014) 36. https://doi.org/10.1016/j.synthmet.2014.09.021
  33. Y. Li, B. Guo, L. Ji, Z. Lin, G. Xu, Y. Liang, S. Zhang, O. Toprakci, Y. Hu, M. Alcoutlabi, X. Zhang, Carbon 51 (2013) 185. https://doi.org/10.1016/j.carbon.2012.08.027
  34. L. Xue, K. Fu, Y. Li, G. Xu, Y. Lu, S. Zhang, O. Toprakci, X. Zhang, Nano Energy 2 (2013) 361. https://doi.org/10.1016/j.nanoen.2012.11.001
  35. L. Ji, X. Zhang, Energy Environ. Sci. 3 (2010) 124. https://doi.org/10.1039/B912188A
  36. M. Dirican, O. Yildiz, Y. Lu, X. Fang, H. Jiang, H. Kizil, X. Zhang, Electrochim. Acta 169 (2015) 52. https://doi.org/10.1016/j.electacta.2015.04.035
  37. Y. Li, Y. Sun, G. Xu, Y. Lu, S. Zhang, L. Xue, J.S. Jur, X. Zhang, J. Mater. Chem. A 2 (2014) 11417. https://doi.org/10.1039/C4TA01562B
  38. Y. Liu, K. Huang, Y. Fan, Q. Zhang, F. Sun, T. Gao, Z. Wang, J. Zhong, Electrochim. Acta 102 (2013) 246. https://doi.org/10.1016/j.electacta.2013.04.021
  39. M.-S. Wang, W.-L. Song, J. Wang, L.-Z. Fan, Carbon 81 (2015) 337.
  40. Z.-L. Xu, B. Zhang, J.-K. Kim, Nano Energy 6 (2014) 27. https://doi.org/10.1016/j.nanoen.2014.03.003
  41. X. Fan, L. Zou, Y.-P. Zheng, F.-Y. Kang, W.-C. Shen, Electrochem. Solid State Lett. 12 (2009) A199. https://doi.org/10.1149/1.3186642
  42. B.-S. Lee, S.-B. Son, J.-H. Seo, K.-M. Park, G. Lee, S.-H. Lee, K.H. Oh, J.-P. Ahn, W.-R. Yu, Nanoscale 5 (2013) 4790. https://doi.org/10.1039/c3nr00982c
  43. B.-S. Lee, H.-S. Yang, H. Jung, S.-Y. Jeon, C. Jung, S.-W. Kim, J. Bae, C.-L. Choong, J. Im, U.-I. Chung, J.-J. Park, W.-R. Yu, Nanoscale 6 (2014) 5989. https://doi.org/10.1039/c4nr00318g
  44. Y.-C. Zhang, Y. You, S. Xin, Y.-X. Yin, J. Zhang, P. Wang, X.-s. Zheng, F.-F. Cao, Y.-G. Guo, Nano Energy 25 (2016) 120. https://doi.org/10.1016/j.nanoen.2016.04.043
  45. J. Shin, K. Park, W.-H. Ryu, J.-W. Jung, Il-Doo Kim, Nanoscale 6 (2014) 12718. https://doi.org/10.1039/C4NR03173C
  46. Y. Chen, Y. Hu, J. Shao, Z. Shen, R. Chen, X. Zhang, X. He, Y. Song, X. Xing, J. Power Sources 298 (2015) 130. https://doi.org/10.1016/j.jpowsour.2015.08.058
  47. J. Yang, Y.X. Wang, S.L. Chou, R. Zhang, Y. Xu, J. Fan, W.X. Zhang, H.K. Liu, D. Zhao, S.X. Dou, Nano Energy 18 (2015) 133. https://doi.org/10.1016/j.nanoen.2015.09.016

Cited by

  1. 아연-이온 전기화학 커패시터의 에너지 저장 성능향상을 위한 다공성 전극 제조 vol.29, pp.8, 2018, https://doi.org/10.3740/mrsk.2019.29.8.505
  2. 하이브리드 슈퍼커패시터의 음극 및 양극 설계에 따른 전기화학적 거동 vol.29, pp.12, 2018, https://doi.org/10.3740/mrsk.2019.29.12.774
  3. 3D graphene-like nanosheets/silicon wrapped by catalytic graphite as a superior lithium storage anode vol.873, pp.None, 2020, https://doi.org/10.1016/j.jelechem.2020.114350
  4. Ultrafast long-life zinc-ion hybrid supercapacitors constructed from mesoporous structured activated carbon vol.530, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2020.147220
  5. Defect engineering via the F-doping of β-MnO2 cathode to design hierarchical spheres of interlaced nanosheets for superior high-rate aqueous zinc ion batteries vol.9, pp.32, 2018, https://doi.org/10.1039/d1ta04051k