Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.12.545

Electrochemical Properties of Tin-Antimony Sulfide Nanocomposites Synthesized by Hydrothermal Method as Anode Materials for Sodium Ion Batteries  

So Hyeon Park (School of Materials Science and Engineering, Gyeongsang National University)
Su Hwan Jeong (School of Materials Science and Engineering, Gyeongsang National University)
Suyoon Eom (School of Materials Science and Engineering, Gyeongsang National University)
Sang Jun Lee (School of Materials Science and Engineering, Gyeongsang National University)
Joo-Hyung Kim (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Korean Journal of Materials Research / v.32, no.12, 2022 , pp. 545-552 More about this Journal
Abstract
Tin-antimony sulfide nanocomposites were prepared via hydrothermal synthesis and a N2 reduction process for use as a negative electrode in a sodium ion battery. The electrochemical energy storage performance of the battery was analyzed according to the tin-antimony composition. The optimized sulfides exhibited superior charge/discharge capacity (770 mAh g-1 at a current density of 100 mA g-1) and stable lifespan characteristics (71.2 % after 200 cycles at a current density of 500 mA g-1). It exhibited a reversible characteristic, continuously participating in the charge-discharge process. The improved electrochemical energy storage performance and cycle stability was attributed to the small particle size, by controlling the composition of the tin-antimony sulfide. By optimizing the tin-antimony ratio during the synthesis process, it did not deviate from the solubility limit. Graphene oxide also acts to suppress volume expansion during reversible electrochemical reaction. Based on these results, tin-antimony sulfide is considered a promising anode material for a sodium ion battery used as a medium-to-large energy storage source.
Keywords
sodium-ion batteries; anode material; tin sulfide; antimony sulfide; graphene oxide;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 D. Larcher and J. M. Tarascon, Nat. Chem., 7, 19 (2015). 
2 N. Yabuuchi, K. Kubota, M. Dahbi and S. Komaba, Chem. Rev., 114, 11636 (2014). 
3 H. Y. Kang, Y. C. Liu, K. Z. Cao, Y. Zhao, L. F. Jiao, Y. J. Wang and H. T. Yuan, J. Mater. Chem. A, 3, 17899 (2015). 
4 V. L. Chevrier and G. Ceder, J. Electrochem. Soc., 158, A1011 (2011). 
5 J.-H. Kim, J. H. Yun and D. K. Kim, Adv. Energy Mater., 8, 1703499 (2018). 
6 X. Li, Z. Yang, Y. Fu, L. Qiao, D. Li, H. Yue and D. He, ACS Nano, 9, 1858 (2015). 
7 S. C. Jung, H. J. Kim, Y. J. Kang and Y. K. Han, J. Alloys Compd., 688, 158 (2016). 
8 J.-H. Kim, Y. H. Jung, J. H. Yun, P. Ragupathy and D. K. Kim, Small, 14, 1702605 (2018). 
9 X. T. Lu, E. R. Adkins, Y. He, L. Zhong, L. L. Luo, S. X. Mao, C. M. Wang and B. A. Korgel, Chem. Mater., 28, 1236 (2016). 
10 R. Chen, R. Luo, Y. Huang, F. Wu and L. Li, Adv. Sci., 3, 1600051 (2016). 
11 F. Li, Y. Y. Qu and M. W. Zhao, J. Mater. Chem. A, 4, 8905 (2016). 
12 L. Baggetto, J. K. Keum, J. F. Browning and G. M. Veith, Electrochem. Commun., 34, 41 (2013). 
13 S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata and S. Kuze, Electrochem. Commun., 21, 65 (2012). 
14 P. R. Kumar, Y. H. Jung, D. K. Kim, RSC Adv., 5, 79845 (2015). 
15 Z. B. Li, C. G. Lin, G. S. Qu, Q. H. Nie, T. F. Xu and S. X. Dai, J. Am. Ceram. Soc., 97, 793 (2014). 
16 R. Saroha, J. Heo, X. Li, N. Angulakshmi, Y. Lee, H.-J. Ahn, J.-H. Ahn and J.-H. Kim, J. Alloys Compd., 893, 162272 (2022).