• Title/Summary/Keyword: Hydrophobic/hydrophilic surface

Search Result 310, Processing Time 0.029 seconds

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang;Wei Li;Yongbin Zhang
    • Membrane and Water Treatment
    • /
    • v.15 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Hydrophilic Modification of Porous Polyvinylidene Fluoride Membrane by Pre-irradiating Electron Beam (전자빔 전조사를 이용한 Polyvinylidene Fluoride 다공막의 친수화 개질)

  • Choi, Yong-Jin;Lee, Sung-Won;Seo, Bong-Kuk;Kim, Min
    • Membrane Journal
    • /
    • v.21 no.2
    • /
    • pp.118-126
    • /
    • 2011
  • A method of light pre-irradiation, one of methods modifying hydrophobic surface to hydrophilic surface in a membrane, was proposed to overcome the drawback of previous methods such as blending, chemical treatment and post-irradiation, Process of membrane preparation in the study was comprised of 4 parts as follows: firstly process of precursor preparation to introduce hydrophilic nature under atmosphere and aqueous vapor by irradiating electron beam (EB), secondly process of dope solution preparation to cast on non-woven fabrics, thirdly process of casting to prepare membrane and finally process of coagulation in non-solvent to form porous structure. The merit of this method might show simple process as well as homogenous modification compared to previous methods. To carry it out, precursor was prepared by irradiating EB to powder PVDF at 75~125 K Gray dose. Precursor prepared was analyzed by FTIR, EDS and DSC to confirm the introduction of hydrophilic function and its mechanism. From their results, it was inferred I conformed that hydrophilic function was hydroxy1 and it was introduced by dehydrozenation. Hydrophilicity of membranes prepared was evaluated by contact angle (pristine PVDF : $62^{\circ}$, 125 K Gray-PVDF$13^{\circ}$). Porosity was evaluated by mercury intrusion method, simultaneously morpholoy and surface pore size were observed by SEM phothographs. The result showed the trend that more dose of EB led to smaller pore size and to lower porosity (pristine PVDF : 82%, 125 K Gray-PVDF : 63%). Trend of water permeability was similar to result above (pristine PVDF : 892 LMH, 125 K Gray-PVDF : 355 LMH).

Change in Water Contact Angle on Electrospray-Synthesized SiO2 Coated Layers by Plasma Exposure (플라즈마 조사에 의한 전기분무합성 SiO2 코팅층의 물접촉각 변화)

  • Kim, Jae-Hun;Lee, Junseong;Kim, Ji Yeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.639-643
    • /
    • 2014
  • Hydrophilic $SiO_2$ layers were obtained by the atmospheric-pressure plasma treatment. Superhydrophobic $SiO_2$ layers were first deposited by the electrospray deposition method. The electrospunable solution that was prepared based on the solgel method was sprayed on Si (100) substrates. The surface of the electrosprayed $SiO_2$ layers consisted of the agglomeration of nano-sized grains, which led to a very high roughness and revealed a very high contact angle to water droplets over $162^{\circ}$. After having been exposed to the atmospheric $Ar/O_2$ plasma, the observed superhydrophobicity of the $SiO_2$ layers were greatly changed: a dramatic variation of the water contact angle from $162^{\circ}$ to $3^{\circ}$, namely realization of superhydrophillicity. Interestingly, the surface microstructure was almost preserved. According to the XPS analysis, it is more likely that thanks to the plasma exposure, the surface of $SiO_2$ layers will be cleaned in terms of organic species that are hydrophobic-inducing, consequently leading to the hydrophilic nature observed for the plasma-exposed $SiO_2$ layers.

Development of Water Soluble Tocopherol Emulsion Using Surfactants (계면활성제를 이용한 수분산 Tocopherol 유화물의 개발)

  • Lee, Eun-Hyun;Chang, Kyu-Seob;Lee, Kyong-Haeng
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.11
    • /
    • pp.1465-1471
    • /
    • 2008
  • This study was carried out to make water-soluble tocopherol emulsion which can be applicable directly in water. The molecular weight of tocopherol was 340 to 360 and tocopherol emulsion model was decided as O/O/W/W type. In correlation between stability of emulsion and surface tension, the stability in surface tension of emulsion was from 40 to 46 dyne/cm. In the case of lower than 40 dyne/cm of surface tension, the stability of the emulsion was lower. Lipophilic surfactants, especially for a polyglycerine polyricinoleate in 20%, 30% and 40% tocopherol emulsion, was the most effective in emulsion stability. A higher stability of the emulsion among hydrophilic surfactants in the tocopherol emulsion was obtained in the following order; polyglycerine monostearate> polyglycerine monooleate> polyoxyethylene (20) sorbitan monooleate$\geq$ polyoxyethylene (20) sorbitan monolaurate.

Surface Cleaning of a Wafer Contaminated by Fingerprint Using a Laser Cleaning Technology (레이저 세정기술을 이용한 웨이퍼의 표면세정)

  • Lee, Myong-Hwa;Baek, Ji-Young;Song, Jae-Dong;Kim, Sang-Bum;Kim, Gyung-Soo
    • Journal of ILASS-Korea
    • /
    • v.12 no.4
    • /
    • pp.185-190
    • /
    • 2007
  • There is a growing interest to develop a new cleaning technology to overcome the disadvantages of wet cleaning technologies such as environmental pollution and the cleaning difficulty of contaminants on integrated circuits. Laser cleaning is a potential technology to remove various pollutants on a wafer surface. However, there is no fundamental data about cleaning efficiencies and cleaning mechanisms of contaminants on a wafer surface using a laser cleaning technology. Therefore, the cleaning characteristics of a wafer surface using an excimer laser were investigated in this study. Fingerprint consisting of inorganic and organic materials was chosen as a representative of pollutants and the effectiveness of a laser irradiation on a wafer cleaning has been investigated qualitatively and quantitatively. The results have shown that cleaning degree is proportional to the laser irradiation time and repetition rate, and quantitative analysis conducted by an image processing method also have shown the same trend. Furthermore, the cleaning efficiency of a wafer contaminated by fingerprint strongly depended on a photothermal cleaning mechanism and the species were removed in order of hydrophilic and hydrophobic contaminants by laser irradiation.

  • PDF

Enhancement of Hydrophobicity by a Heat Treatment of Zinc Aluminate Thin Film Deposited on Glass Substrate (글라스 기판 위에 증착된 Zin Aluminate 박막의 열처리를 통한 소수성 특성의 향상)

  • Seo, Sang-Young;Yoon, Soon-Gil
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.249-254
    • /
    • 2020
  • An 80 nm thick zinc aluminate thin film was deposited on a glass substrate via radio-frequency (rf) magnetron sputtering and heat treated to analyze changes in the wetting angles due to a surface modification. The thin films were modified from hydrophilic to hydrophobic by a simple thermal treatment. The surface modification from a heat treatment increased the wetting angles up to 111°, which was explained by the relationship with the excess surface area. The wetting angles of the annealed thin films decreased with increasing exposure time under ambient conditions, which was attributed to the oxygen vacancies in the films that were introduced during deposition. The annealed thin films were treated by ionized oxygen via oxygen plasma. After the oxygen plasma treatment, the decreased wetting angles were maintained at ~95° for 11 days.

Hydrophobic Coating on Fish Feed Using Dielectric Barrier Discharge Plasma Polymerization (유전체장벽방전 플라즈마 중합을 이용한 양어 사료의 소수성 코팅)

  • Lee, Sang Baek;Hung, Trinhquang;Jo, Jin Oh;Jung, Jun Bum;Im, Tae Heon;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.174-180
    • /
    • 2014
  • A plasma hydrophobic coating on commercial fish feed was conducted to prolong the floating time of feed, thereby enhancing the feed consumption rate and reducing the contamination of water in fish farms. The hydrophobic coating on the fish feed was prepared using an atmospheric-pressure dielectric barrier discharge (DBD) plasma with hexamethyldisiloxane (HMDSO), toluene and n-hexane as the precursors. The effect of the parameters such as input power, precursor type and coating time on the coating performance were examined. The physicochemical properties of the coating layer were analyzed using a Fourier transform infrared (FTIR) spectrometer and a contact angle (CA) analyzer. The water CA increased after the coating preparation, indicating that the surface changed from hydrophilic to hydrophobic. The FTIR characterization revealed that the hydrophobic layer was comprised of functional groups such as $CH_3$, Si-O-Si and Si-C. As a result of the hydrophobic coating, the floating time of the fish feed increased from several seconds to 3 minutes, which suggested that the plasma coating method could be a viable means for practical applications. Compared to the water CA measured as soon as the coating layer was prepared, the 6-day aged sample exhibited a substantial CA increase, confirming the aging effect on the improvement of the hydrophobicity.

Glycolipid Biosurfactants Produced by Pseudomonas aeruginosa D2D2 from Diesel-Contaminated Soil

  • MOON, HYE-JOON;YOUNG-KUONG LIM;HEE-SIK KIM;DAE-YOUNG KWON;WOOK-JIN CHUNG
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.371-376
    • /
    • 2002
  • A biosurfactant-producing bacterial strain was selected from diesel-contaminated soil by measuring the oil-film collapsing activity and identified as Pseudomonas aeruginosa D2D2. When glucose and olive oil were used as carbon sources, 11.46 g/1 of biosurfactant was obtained. Based on TLC analysis, the biosurfactant produced from P. aeruginosa D2D2 was identified as a glycolipid, consisting of two types of biosurfactants (Type I and Type II). The purified glycolipid reduced the surface tension of the culture from 72 dyne/cm to 27 dyne/cm. The hydrophilic and hydrophobic moiety of the biosurfactant were rhamnose and ${\beta}$-hydroxydecanoic acid, as determined by FAB-MS and NMR analyses, respectively.

Fabrication of Mesoporous Hollow TiO2 Microcapsules for Application as a DNA Separator

  • Jeon, Sang Gweon;Yang, Jin Young;Park, Keun Woo;Kim, Geon-Joong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3583-3589
    • /
    • 2014
  • This study evaluated a simple and useful route to the synthesis of mesoporous $TiO_2$ microcapsules with a hollow macro-core structure. A hydrophilic precursor sol containing the surfactants in the hydrophobic solvents was deposited on PMMA polymer surfaces modified by non-thermal plasma to produce mesoporous shells after calcination. The surface of the PMMA polymer spheres was coated with $NH_4F$ and CTAB to control the interfacial properties and promote the subsequent deposition of inorganic sols. These hollow type mesoporous $TiO_2$ microcapsules could be applied as an efficient substrate for the immobilization of DNA oligonucleotides.

Pore-network Study of Liquid Water Transport through Multiple Gas Diffusion Medium in PEMFCs (고분자 연료전지의 다공성층 내에서의 액상수분 이동에 관한 공극-네트워크 해석 연구)

  • Kang, Jung-Ho;Lee, Sang-Gun;Nam, Jin-Hyun;Kim, Charn-Jung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.46-53
    • /
    • 2011
  • Water is continuously produced in polymer electrolyte membrane fuel cell (PEMFC), and is transported and exhausted through polymer electrolyte membrane (PEM), catalyst layer (CL), microporous layer (MPL), and gas diffusion layer (GDL). The low operation temperatures of PEMFC lead to the condensation of water, and the condensed water hinders the transport of reactants in porous layers (MPL and GDL). Thus, water flooding is currently one of hot issues that should be solved to achieve higher performance of PEMFC. This research aims to study liquid water transport in porous layers of PEMFC by using pore-network model, while the microscale pore structure and hydrophilic/hydrophobic surface properties of GDL and MPL were fully considered.

  • PDF