DOI QR코드

DOI QR Code

Slippage on which interface in nanopore filtration?

  • Xiaoxu Huang (School of Mechanical Technology, Wuxi Institute of Technology) ;
  • Wei Li (School of Mechanical Technology, Wuxi Institute of Technology) ;
  • Yongbin Zhang (College of Mechanical Engineering, Changzhou University)
  • Received : 2023.08.11
  • Accepted : 2024.04.02
  • Published : 2024.01.25

Abstract

The flow in a nanopore of filtration membrane is often multiscale and consists of both the adsorbed layer flow and the intermediate continuum fluid flow. There is a controversy on which interface the slippage should occur in the nanopore filtration: On the adsorbed layer-pore wall interface or on the adsorbed layer-continuum fluid interface? What is the difference between these two slippage effects? We address these subjects in the present study by using the multiscale flow equations incorporating the slippage on different interfaces. Based on the limiting shear strength model for the slippage, it was found from the calculation results that for the hydrophobic pore wall the slippage surely occurs on the adsorbed layer-pore wall interface, however for the hydrophilic pore wall, the slippage can occur on either of the two interfaces, dependent on the competition between the interfacial shear strength on the adsorbed layer-pore wall interface and that on the adsorbed layer-continuum fluid interface. Since the slippage on the adsorbed layer-pore wall interface can be designed while that on the adsorbed layer-continuum fluid interface can not, the former slippage can result in the flux through the nanopore much higher than the latter slippage by designing a highly hydrophobic pore wall surface. The obtained results are of significant interest to the design and application of the interfacial slippage in nanoporous filtration membranes for both improving the flux and conserving the energy cost.

Keywords

References

  1. Adiga, S.P., Jin, C., Curtiss, L.A., Monteiro-Riviere, N.A. and Narayan, R. J. (2009), "Nanoporous membranes for medical and biological applications", Nanomed. Nanobiotech., 1(5), 568-581. https://doi.org/10.1002/wnan.50. 
  2. Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353. 
  3. Atkas, O. and Aluru, N.R. (2002), "A combined continuum/ DSMC technique for multiscale analysis of microfluidic filters", J. Comput. Phys., 178(2), 342-372. https://doi.org/10.1006/jcph.2002.7030. 
  4. Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13. 
  5. Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063. 
  6. Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097. 
  7. Cadotte, J.E., Petersen, R.J., Larson, R.E. and Erickson, E.E. (1980), "A new thin film composite seawater reverse osmosis membrane", Desali., 32(1), 25-31. https://doi.org/10.1016/S0011-9164(00)86003-8. 
  8. Calabro, F., Lee, K.P. and Mattia, D. (2013), "Modelling flow enhancement in nanochannels: Viscosity and slippage", Appl. Math. Lett., 26(10), 991-994. https://doi.org/10.1016/j.aml.2013.05.004. 
  9. Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16(2), 1027. https://doi.org/10.1021/acs.nanolett.5b04089. 
  10. Oliveira, E.E.M., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3(4), 231-242. http://doi.org/10.12989/mwt.2012.3.4.231. 
  11. El-ghzizel, S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A. (2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10(4), 277-286. https://doi.org/0.12989/mwt.2019.10.4.277.  https://doi.org/10.4.277
  12. Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326(1), 58-63. http://doi.org/10.1016/j.memsci.2008.09.039. 
  13. Gennes de, P.G. (2002), "On fluid/wall slippage", Langmuir, 18, 3413-3414. https://doi.org/10.1021/la0116342 
  14. Grosse-Rhode, M. and Findenegg, G.H. (1978), "Formation of ordered monolayers of n-alkanes at the cleavage face of nickel chloride", J. Coll. Interf. Sci., 1978, 64(2), 374-376. https://doi.org/10.1016/0021-9797(78)90375-2. 
  15. Gruener, S., Wallacher, D., Greulich, S., Busch, M. and Huber, P. (2016), "Hydraulic transport across hydrophilic and hydrophobic nanopores: Flow experiments with water and n-hexane", Phys. Rev. E, 93(1), 013102. https://doi.org/10.1103/PhysRevE.93.013102. 
  16. Harrell, C.C., Siwy, Z.S. and Martin, C.R. (2006), "Conical nanopore membranes: Controlling the nanopore shape", Small, 2(2), 157. https://doi.org/10.1002/smll.200690004. 
  17. Ho, T.A., Papavassiliou, D.V., Lee, L.L. and Striolo, A. (2011), "Liquid water can slip on a hydrophilic surface", PNAS, 108(39), 16170-16175. https://doi.org/10.1073/pnas.110518910. 
  18. Holt, J.K., Park, H.G., Wang, Y., Staermandn, M., Artyukhin, A.B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312(5776), 1034-1037. https://doi.org/10.1126/science.1126298. 
  19. Huang, L., Zhang, M., Li, C. and Shi, G. (2015), "Graphene-based membranes for molecular separation", J. Phys. Chem. Lett., 6(14), 2806-2815. https://doi.org/10.1021/acs.jpclett.5b00914. 
  20. Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J.J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K. and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376(6594), 738-743. https://doi.org/10.1126/science.abd0966. 
  21. Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4(7), 3548-3553. http://doi.org/10.1021/nn1014006. 
  22. Jiang, C.T. and Zhang, Y.B. (2022), "Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows", Sci. Rep., 12, 396. https://doi.org/10.1038/s41598-021-04391-5. 
  23. Jiang, C.T. and Zhang, Y.B. (2024), "Comparisons between full molecular dynamics simulation and Zhang's multiscale scheme for nanochannel flows", J. Mol. Mod., In Press. 
  24. Jiang, X.B., Shao, Y., Li, J., Wu, M., Niu, Y., Ruan, X., Yan, X., Li, X. and He, G. (2020), "Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation", ACS Nano, 14(12), 17376-17386. https://doi.org/10.1021/acsnano.0c07543. 
  25. Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable resuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299.  https://doi.org/10.4.299
  26. Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396. 
  27. Koklu, A., Li, J., Sengor, S. and Beskok, A. (2017), "Pressure‑ driven water flow through hydrophilic alumina nanomembranes", Microfluid. Nanofluid., 21, 124. https://doi.org/10.1007/s10404-017-1960-1. 
  28. Lin, W., Li, J. and Zhang, Y.B. (2022), "Mass transfer in the filtration membrane covering from macroscale, multiscale to nanoscale", Membr. Water Treat., 13(4), 167-172. https://doi.org/10.12989/mwt.2022.13.4.167. 
  29. Liu, C. and Li, Z. (2011), "On the validity of the Navier-Stokes equations for nanoscale liquid flows: The role of channel size", AIP Adv., 1(3), 032108. https://doi.org/10.1063/1.3621858. 
  30. Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a. 
  31. Mattia, D. and Calabro, F. (2012), "Explaining high flow rate of water in carbon nanotubes via solid-liquid molecular interactions", Microfluid. Nanofluid., 13, 125-130. https://doi.org/10.1007/s10404-012-0949-z. 
  32. Meyer, E., Overney, R.M., Dransfeld, K. and Gyalog, T. (1998), Friction and Rheology on the Nanometer Scale, World Scientific Press, New Jersey, NJ, USA. 
  33. Myers, T.G. (2011), "Why are slip lengths so large in carbon nanotubes?" Microfluid. Nanofluid., 10, 1141-1145. https://doi.org/10.1007/s10404-010-0752-7. 
  34. Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium- leak-tight graphene based membranes", Science, 335(6067), 442-444. https://doi.org/ 10.1126/science.1211694. 
  35. Radha1, A., Esfandiar1, F., Wang, A.P., Rooney, K., Gopinadhan, A., Keerthi, A., Mishchenko, A., Janardanan, P., Fumagalli, M., Lozada-Hidalgo, S., Garaj, S.J., Haigh, I.V., Grigorieva, H.A. and Wu, A.K. (2016), "Molecular transport through capillaries made with atomic-scale precision", Nature, 538, 222-225. https://doi.org/10.1038/nature19363. 
  36. Rozeanu, L. and Tipei, N. (1980), "Slippage phenomena at the interface between the adsorbed layer and the bulk of the lubricant: Theory and experiment", Wear, 64(2), 245-257. https://doi.org/10.1016/0043-1648(80)90131-3. 
  37. Sanjay, R., Nagarajan, P., Sabyasachi, G., Subhadip, M., Suryasarathi, B. and Narayan, Ch.D. (2021), "Porous graphenebased membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Separ. Purifi. Rev., 50(3), 262-282. https://doi.org/10.1080/15422119.2020.1725048. 
  38. Secchi, E., Marbach, S., Nigues, A., Stein, D., Siria, A. and Bocquet, L. (2016), "Massive radius-dependent flow slippage in carbon nanotubes", Nature, 537, 210-213. https://doi.org/10.1038/nature19315. 
  39. Shaat, M. (2017), "Viscosity of water interfaces with hydrophobic nanopores: Application to water flow in carbon nanotubes", Langmuir, 33(44), 12814-12819. https://doi.org/10.1021/acs.langmuir.7b02752. 
  40. Sofos, F. (2021), "A water/ion separation device: theoretical and numerical investigation", Appl. Sci., 11(18), 8548. https://doi.org/10.3390/app11188548. 
  41. Sofos, F., Karakasidis, T.E. and Liakopoulos, A. (2015), "Fluid structure and system dynamics in nanodevices for water desalination", Desali. Water Treat., 57(25), 11561-11571. https://doi.org/10.1080/19443994.2015.1049966. 
  42. Stavrogiannis, C., Sofos, F., Karakasidis, T.E. and Vavougios, D. (2022), "Investigation of water desalination/purification with molecular dynamics and machine learning techniques", AIMS Mater. Sci., 9(6), 919-938. https://doi.org/10.3934/matersci.2022054. 
  43. Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10, 459-464. https://doi.org/10.1038/nnano.2015.37. 
  44. Thomas, J.A. and McGaughey, A.J.H. (2008), "Density, distribution, and orientation of water molecules inside and outside carbon nanotubes", J. Chem. Phys., 128(8), 084715. https://doi.org/10.1063/1.2837297. 
  45. Thomas, J.A. and McGaughey, A.J.H. (2009), "Water flow in carbon nanotubes: Transition to subcontinuum transport", Phys. Rev. Lett., 102(18), 184502. https://doi.org/10.1103/PhysRevLett.102.184502. 
  46. Tran-Duc, T., Phan-Thien, N. and Wang, J. (2019), "A theoretical study of permeability enhancement for ultrafiltration ceramic membranes with conical pores and slippage", Phys. Fluids, 31(2), 022003. https://doi.org/10.1063/1.5085140. 
  47. Vinogradova, O.I. (1995), "Drainage of a thin liquid film confined between hydrophobic surfaces", Langmuir, 11, 2213-2220. https://doi.org/10.1021/la00006a059 
  48. Wagemann, E., Walther, J.H., Cruz-Chu, E.R. and Zambrano, H.A. (2019), "Water flow in silica nanopores coated by carbon nanotubes from a wetting translucency perspective", J. Phys. Chem., 123(42), 25635-25642. https://doi.org/10.1021/acs.jpcc.9b05294. 
  49. Walther, J.H., Ritos, K., Cruz-Chu, E.R., Megaridis, C.M. and Koumoutsakos, P. (2013), "Barriers to superfast water transport in carbon nanotube membranes", Nano Lett., 13(5), 1910-1914. https://doi.org/10.1021/nl304000k. 
  50. Wang, L., Dumont, R. and Dickson, J.M. (2012), "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", J. Chem. Phys., 137(4), 044102. https://doi.org/ 10.1063/1.4734484. 
  51. Wang, M. and Zhang, Y.B. (2022), "Water permeability through the wall of blood capillary", Front. Heat Mass Transf., 18, 7. http://doi.org/10.5098/hmt.18.7. 
  52. Whitby, M. and Quirke, N. (2007), "Fluid flow in carbon nanotubes and nanopipes", Nature Nanotech., 2, 87-94. https://doi.org/10.1038/nnano.2006.175. 
  53. Wu, K., Chen, Z., Li, J., Xu, J., Wang, K., Li, R., Wang, S. and Dong, X. (2019), "Ultrahigh water flow enhancement by optimizing nanopore chemistry and geometry", Langmuir, 35(26), 8867-8873. https://doi.org/10.1021/acs.langmuir.9b01179. 
  54. Yen, T.H., Soong, C.Y. and Tzeng, P.Y. (2007), "Hybrid molecular dynamics-continuum simulation for nano/mesoscale channel flows", Microfluid. Nanofluid., 3, 665-675. https://doi.org/10.1007/s10404-007-0154-7. 
  55. Zhang, Y.B. (2004), "Modeling of molecularly thin film elastohydrodynamic lubrication", J. Balkan Trib. Assoc., 10(3), 394-421. 
  56. Zhang, Y.B. (2006), "Flow factor of non-continuum fluids in one-dimensional contact", Industr. Lubri. Trib., 58(3), 151-169. https://doi.org/10.1108/00368790610661999. 
  57. Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20(4), 522-538. 
  58. Zhang, Y.B. (2015a), "The flow factor approach model for the fluid flow in a nano channel", Int. J. Heat Mass Transf., 89, 733-742. https://doi.org/10.1016/j.ijheatmasstransfer.2015.05.092 
  59. Zhang, Y.B. (2015b), "A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film", Theor. Comput. Fluid Dyn., 29, 193-204. https://doi.org/10.1007/s00162-015-0348-7 
  60. Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92(1), 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008. 
  61. Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069.