• Title/Summary/Keyword: Hydrophilic interaction liquid chromatography

Search Result 16, Processing Time 0.023 seconds

Hydrophilic Interaction Liquid Chromatography (HILIC 분석법 개발을 위한 지능형 솔루션)

  • Matt James;Colin Pipe;Mark Fever;Jen Field;Seungho Chae
    • FOCUS: LIFE SCIENCE
    • /
    • no.1
    • /
    • pp.6.1-6.9
    • /
    • 2024
  • The document is a white paper on Hydrophilic Interaction Liquid Chromatography (HILIC) analysis method development. HILIC is a type of chromatography that uses an organic/aqueous mobile phase and a polar stationary phase. In HILIC, water is a strong solvent, and unlike in Reversed Phase Liquid Chromatography (RPLC), increasing the proportion of water in the mobile phase reduces the retention time of the analyte. The paper discusses when to consider HILIC analysis methods, the advantages of HILIC, and the challenges often encountered due to the lack of understanding of HILIC mechanisms compared to RPLC. It also provides a systematic flowchart for intelligent solutions for HILIC analysis method development, which includes a three-step approach for chromatography analysis method development. The first step involves gathering as much information as possible about the analyte (e.g., pKa, log P, log D). The second step involves analyzing the sample under different pH conditions using three HILIC columns in either isocratic or gradient mode to identify the suitable column/pH combination for the analyte. The third step involves optimizing the separation by investigating other parameters such as temperature and ionic strength, and assessing the robustness of the method. The paper emphasizes that the selection of the appropriate stationary/mobile phase combination, based on the differences between the HILIC stationary phases and the mobile phase pH, can provide high selectivity in the analysis. This step-by-step approach can help users develop an efficient analysis method.

  • PDF

The Use of Electrostatic Repulsion-Hydrophilic Interaction Chromatography (ERLIC) for Proteomics Research

  • Ng, Justin Tze-Yang;Hao, Piliang;Sze, Siu Kwan
    • Mass Spectrometry Letters
    • /
    • v.5 no.4
    • /
    • pp.95-103
    • /
    • 2014
  • Characterization and studies of proteome are challenging because biological samples are complex, with a wide dynamic range of abundance. At present the proteins are identified by digestion into peptides, with subsequent identification of the peptides by mass spectrometry (MS). MS is a powerful technique for the purpose, but it cannot identify every peptide in such complex mixtures simultaneously. For accurate analysis and quantification it is important to separate the peptides first by chromatography into fractions of a size that MS can handle. With these less complex fractions, the probability is increased of identifying peptides of low abundance that would otherwise experience ion suppression effects due to the presence of peptides of high abundance. Enrichment for peptides with certain post-translational modifications helps to increase their detection rates as well. Electrostatic repulsion-hydrophilic interaction chromatography (ERLIC) is a mixed-mode chromatographic technique which combines the use of electrostatic repulsion and hydrophilic interaction. This review provides an overview of ERLIC and its various proteomics applications. ERLIC has been demonstrated to have good orthogonality to reverse phase liquid chromatography (RPLC), making it useful as a first dimension in multidimensional liquid chromatography (MDLC) and fractionation of digests in general. Peptides elute in order of their isoelectric points and polarity. ERLIC has also been successfully utilized for the enrichment for phosphopeptides and glycopeptides, facilitating their identification. In addition, it is promising for the study of peptide deamidation. ERLIC performs comparably well or better than established methods for these various applications, and serves as a viable and efficient workflow alternative.

Determination of Betaine in Fructus Lycii Using Hydrophilic Interaction Liquid Chromatography with Evaporative Light Scattering Detection

  • Shin, Hyun-Du;Suh, Joon-Hyuk;Kim, Jung-Hyun;Lee, Hye-Yeon;Eom, Han-Young;Kim, Un-Yong;Yang, Dong-Hyug;Han, Sang-Beom;Youm, Jeong-Rok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.553-558
    • /
    • 2012
  • A simple new method was developed for the determination of betaine in Fructus Lycii using hydrophilic interaction liquid chromatography with evaporative light scattering detection (HILIC-ELSD). Good chromatographic separation and reasonable betaine retention was achieved on a Kinetex HILIC column ($2.1{\times}100mm$, $2.6{\mu}m$) packed with fused-core particle. The mobile phase consisted of (A) acetonitrile and (B) 10 mM ammonium formate (pH 3.0)/acetonitrile (90/10, v/v). It was used with gradient elution at a flow rate of 0.7 mL/min. The column temperature was set at $27.5^{\circ}C$ and the injection volume was $10{\mu}L$. The ELSD drift tube temperature was $50^{\circ}C$ and the nebulizing gas (nitrogen) pressure was 3.0 bar. Stachydrine, a zwitterionic compound, was used as an internal standard. Calibration curve over $10-250{\mu}g/mL$ showed good linearity ($R^2$ > 0.9992) and betaine in the 70% methanol extract of Fructus Lycii was well separated from other peaks. Intraand inter-day precision ranged from 1.1 to 3.0% and from 2.4 to 5.3%, respectively, while intra- and inter-day accuracy ranged from 100.0 to 107.0% and from 94.3 to 103.9%, respectively. The limit of quantification (LOQ) was $10{\mu}g/mL$ and the recoveries were in the range of 98.2-102.7%. The developed HILIC-ELSD method was successfully applied to quantitatively determine the amount of betaine in fourteen Fructus Lycii samples from different locations, demonstrating that this method is simple, rapid, and suitable for the quality control of Fructus Lycii.

Development and Validation of an Analytical Method for Glucuronolactone in Energy Drinks by Hydrophilic Interaction Liquid Chromatography-electrospray Tandem Mass Spectrometry

  • Oh, Mi Hyune;Lim, Moo Song;Chai, Jeung Young;Kim, Eun Jung;Cho, Joong Hoon;Lim, Chul Joo;Choi, Sun Ok
    • Journal of Food Hygiene and Safety
    • /
    • v.32 no.2
    • /
    • pp.89-95
    • /
    • 2017
  • A rapid, sensitive analytical method for glucuronolactone in beverages was developed and validated using hydrophilic interaction liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HILIC-ESI-MS/MS). To determine the optimum analytical conditions for glucuronolactone, three different kinds of HILIC columns and two mobile phases with different pH values were examined. An amide-bonded stationary phase with a pH 9 acetonitrile-rich mobile phase was the best condition in terms of column retention, ESI-MS/MS response area, and signal-to-noise ratio. After extraction, glucuronolactone was separated through the HILIC amide column and detected by negative ESI-MS/MS in selected reaction monitoring (SRM) mode. Nine energy drinks sold in Korea were spiked with glucuronolactone at a concentration of 5 ng/mL; the Monster $Energy^{TM}$ sample showed the smallest peak area and its signal-to-noise ratio was used for method validation. Good linearity was obtained in the concentration range from 20 to 1500 ng/mL with a correlation coefficient > 0.998. The developed method had a limit of detection (LOD) of 6 ng/mL and a limit of quantitation (LOQ) of 20 ng/mL. The recovery of this method at concentration of 20, 100, 500, and 1000 ng/mL was 96.3%-99.2% with relative standard deviations (RSD) of 1.6%-14.0%. A reproducibility precision assessment at concentration of 100 and 500 ng/mL was carried out among three laboratories. The recovery of that evaluation was 95.1%-102.3% with RSD of 2.7%-7.0%. An analysis of variance indicated that there was no difference between the recovery results of the three laboratories at the 5% significance level. The validated method is applicable to inspecting beverages adulterated with glucuronolactone in Korea.

Liquid Chromatography-Tandem Mass Spectrometry Analysis of Riboflavin in Beagle Dog Plasma for Pharmacokinetic Studies

  • Jeong, Hyeon Myeong;Shin, Beom Soo;Shin, Soyoung
    • Mass Spectrometry Letters
    • /
    • v.11 no.1
    • /
    • pp.10-14
    • /
    • 2020
  • Riboflavin is a water-soluble vitamin, which serves as a precursor to flavin mononucleotide and flavin adenine dinucleotide. This study aimed to develop a simple and rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis for the quantification of riboflavin in the Beagle dog plasma. This method utilized simple protein precipitation with acetonitrile and 13C4, 15N2-riboflavin was used as an internal standard (IS). For chromatographic separation, a hydrophilic interaction liquid chromatography (HILIC) column was used with gradient elution. The mobile phase consisted of 0.1% (v/v) aqueous formic acid with 10 mM ammonium formate and acetonitrile with 0.1% (v/v) formic acid. Since riboflavin is an endogenous compound, 4% bovine serum albumin in phosphate buffered saline was used as a surrogate matrix to prepare the calibration curve. The quantification limit for riboflavin in the Beagle dog plasma was 5 ng/mL. The method was fully validated for its specificity, sensitivity, accuracy and precision, recovery, and stability according to the US FDA guidance. The developed LC-MS/MS method may be useful for the in vivo pharmacokinetic studies of riboflavin.

Determination of Tiapride in Human Plasma Using Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry

  • Moon, Ya;Paek, In-Bok;Kim, Hui-Hyun;Ji, Hye-Young;Lee, Hye-Won;Park, Hyoung-Geun;Lee, Hye-Suk
    • Archives of Pharmacal Research
    • /
    • v.27 no.9
    • /
    • pp.901-905
    • /
    • 2004
  • A rapid, sensitive and selective hydrophilic interaction liquid chromatography-tandem mass spectrometric(HILIC-MS/MS) method for the determination of tiapride in human plasma was developed. Tiapride and internal standard, metoclopramide were extracted from human plasma with dichloromethane at basic pH and analyzed on an Atlantis HILIC silica column with the mobile phase of acetonitrile-ammonium formate (190 mM, pH 3.0) (94:6, v/v). The ana-Iytes were detected using an electrospray ionization tandem mass spectrometry in the multi-ple-reaction-monitoring mode. The standard curve was linear (r=0.999) over the concentration range of 1.00-200 ng/mL. The coefficient of variation and relative error for intra- and inter-assay at three QC levels were 6.4∼8.8% and -2.0∼3.6%, respectively. The recoveries of tiapride ranged from 96.3 to 97.4%, with that of metoclopramide (internal standard) being 94.2%. The lower limit of quantification for tiapride was 1.00 ng/mL using 1 00 $\mu$L of plasma sample.

Development and Validation of a Unique HPLC-ELSD Method for Analysis of 1-Deoxynojirimycin Derived from Silkworms (누에에 함유된 1-Deoxynojirimycin의 분석을 위한 HPLC-ELSD 분석법 밸리데이션)

  • Hyejin Cho;Sullim Lee;Myoung-Sook Shin;Joohwan Lee;Sanghyun Lee
    • Korean Journal of Pharmacognosy
    • /
    • v.54 no.1
    • /
    • pp.38-43
    • /
    • 2023
  • A simple and accurate assay was developed for the quantitative analysis of 1-deoxynojirimycin (1-DNJ) derived from the silkworm (Bombyx mori). Normal-phase high-performance liquid chromatography coupled with an evaporative light scattering detector (HPLC-ELSD) and a hydrophilic interaction liquid chromatography column was used. Various parameters were applied to optimize the analysis method. The limits of detection and quantification of 1-DNJ were 2.97 × 10-3 and 9.00 × 10-3 mg/mL, respectively. The calibration curve showed good linearity results. The concentration range and the r2 value were 0.0625-1.0 mg/mL and 0.9997, respectively. The accuracy test demonstrated a significantly high recovery rate (89.95-103.22%). The relative standard deviation was ≤ 1.00%. Thus, a method for the accurate identification and quantitative analysis of 1-DNJ in silkworms was developed. Moreover, in this procedure, the process of derivatization of 1-DNJ, which was required in previous experiments, could be eliminated. This technique may be actively utilized for the development of pharmaceuticals and health functional foods using 1-DNJ.

Development of an analytical method for the determination of dl-methylephedrine hydrochloride in porcine muscle using liquid chromatography-tandem mass spectrometry (LC-MS/MS를 이용한 돼지 근육조직 중 dl-methylephedrine hydrochloride의 잔류 분석법 개발)

  • Chae, Won-Seok;Kim, Suk;Lee, Hu-Jang
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.4
    • /
    • pp.209-213
    • /
    • 2020
  • This study examined the residue of dl-methylephedrine hydrochloride (MEP) on the muscle of pigs administered orally with MEP 12 g/ton feed for seven consecutive days. Twenty healthy cross swine were administered MEP. Four treated animals were selected arbitrarily to be sacrificed at 1, 2, 3, 4, and 5 days after treatment. MEP residue concentrations in the muscle were determined by liquid chromatography coupled with tandem mass spectrometry. The drug was extracted from muscle samples using 10 mM ammonium formate in acetonitrile followed by clean-up with n-hexane. The analyte was separated on an XBridgeTM hydrophilic interaction liquid chromatography column using 10 mM ammonium formate in deionized distilled water and acetonitrile. The correlation coefficient (R2) of the calibration curve was 0.9974, and the limits of detection and quantification were 0.05 and 0.15 ㎍/kg, respectively. The recoveries at three spiking levels were 94.5-101.2%, and the relative Standard Deviations was less than 4.06%. In the MEP-treated group, MEP residues on one day post-treatment were below the maximum residue limit in the muscle. The developed method is sensitive and reliable for the detection of MEP in porcine muscle tissues. Furthermore, it exhibits low quantification limits for animal-derived food products destined for human consumption.

Determination of Veterinary Antibiotic Residues: III. Analytical Methods_A Review (시료 중 잔류 항생제 분석 방법: III. 기기 분석 방법)

  • Kim, Chansik;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.649-669
    • /
    • 2016
  • This study explored the analytical conditions for 21 veterinary antibiotics which have been popularly sold in South Korea in 2014 but have not yet been targeted in EPA method 1694. Most of the selected antibiotics were separated by a reverse-phase C18 column with a combination of (buffered) water and organic polar solvent, which was commonly methanol and acetonitrile in the gradient elution mode. Volatile additives such as formic acid, ammonium acetate and ammonium formate were usually added to the mobile phases to minimize asymmetrical and tailing of antibiotics' peaks and to increase their ionization in mass spectrometry. The analytical methods of aminoglycoside antibiotics were distinct from those of the other antibiotics in terms of adoption of ion-pair chromatography (IPC) and hydrophilic interaction liquid chromatography (HILIC) capable of retaining and separating extremely polar compounds due to their hydrophilicity. Trifluoroacetic acid or heptafluorobutyric acid was frequently added to the mobile phase as an ion-pair reagent for the IPC. Tandem mass spectrometry was numerously applied to the detection of antibiotics using positive electrospray ionization (ESI) and the selected reaction monitoring (SRM) mode. All reviewed analytical methods had been/were validated by evaluating recovery, limits of detection and quantification, decision limit or detection capability of the methods.

Direct Quantitation of Amino Acids in Human Serum Using a Stepwise-Dilution Strategy and a Mixed-Mode Liquid Chromatography-Tandem Mass Spectrometry Method

  • Lee, Jaeick;Lee, Seunghwa;Kim, Byungjoo;Lee, Joonhee;Kwon, Oh-Seung;Cha, Eunju
    • Mass Spectrometry Letters
    • /
    • v.9 no.1
    • /
    • pp.30-36
    • /
    • 2018
  • A quantitation method for free amino acids in human serum was developed using a stepwise-dilution method and a bimodal cation exchange (CEX)/hydrophilic interaction liquid chromatography (HILIC)-tandem mass spectrometry system equipped with an electrospray ionization source (ESI/MS/MS). This method, which was validated using quality control samples, was optimized for enhanced selectivity and sensitivity. Dithiothreitol (DTT) was used as a reducing agent to prevent the oxidation of a serum sample ($50{\mu}L$), which was then subjected to stepwise dilution using 3, 30, and 90 volumes of acetonitrile containing 0.1% formic acid. Chromatographic separation was performed on an Imtakt Intrada Amino Acid column ($50mm{\times}3mm$, $3{\mu}m$) in mixed mode packed with CEX and HILIC ligands embedded in the stationary phase. Underivatized free amino acids were eluted and separated within 10 min. As a result of the validation, the precision and accuracy for the inter- and intraday assays were determined as 2.11-11.51% and 92.82-109.40%, respectively. The lowest limit of quantification (LLOQ) was $0.5-4.0{\mu}g/mL$ and the matrix effect was 80.22-115.93%. The proposed method was successfully applied to the quantitative analysis of free amino acids in human serum.