• Title/Summary/Keyword: Hydrolytic degradation

Search Result 75, Processing Time 0.025 seconds

Synthesis and Degradation Behaviors of PEO/PL/PEO tri-block Copolymers

  • Lee, Soo-Hong;Kim, Soo-Hyun;Kim, Young-Ha;Han, Yang-Kyoo
    • Macromolecular Research
    • /
    • v.10 no.2
    • /
    • pp.85-90
    • /
    • 2002
  • Poly (ethylene oxide)/polylatide/poly(ethylene oxide) (PEO/PL/PEO) tri-block copolymers, which each block is connected by ester bond, were synthesized by coupling reaction of PL with PEO in the presence of pyridine. PL/PEO/PL tri-block copolymer was synthesized by ring opening polymerization of L-lactide initiated by PEO in the presence of stannous octoate. Degradation behavior of the copolymers was investigated in a pH 7.4 phosphate buffer saline (PBS) at 37$\pm$1 $^{\circ}C$. Gel permeation chromatography (GPC) and $^1$H-nuclear magnetic resonance (NMR) were used to monitor the change of mass loss, molecular weight and composition of copolymers. In hydrolytic degradation, the PEO/PL/PEO tri-block copolymer with high PEO contents affected the increase of its mass loss, and resulted in the decrease of its molecular weight as well as PEO composition. However, when PL/PEO/PL and PEO/PL/PEO tri-block copolymers had similar PEO contents, PEO/PL/PEO decreased faster in molecular weight and PEO composition than PL/PEO/PL.

A Study on Morphology and Mechanical Properties of Biodegradable Polymer Nanocomposites (생분해성 고분자 나노복합체의 형태학 및 기계적 특성 연구)

  • Jang, Sang Hee
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.401-409
    • /
    • 2013
  • BBiodegradable polymers have attracted great attention because of the increased environmental pollution by waste plastics. In this study, PLA (polylactic acid)/Clay-20 (Cloisite 20) and PLA (polylactic acid)/PBS (poly(butylene succinate)/Clay-20 (Cloisite 20) nanocomposites were manufactured in a twin-screw extruder. Specimens for mechanical properties of PLA/Clay-20 and PLA/PBS (90/10)/Clay-20 nanocomposites were prepared by injection molding. Thermal, mechanical, morphological and raman spectral properties of two nanocomposites were investigated by differential scanning calorimetry (DSC), tensile tester, scanning electron microscopy (SEM) and raman-microscope spectrophotometer, respectively. In addition, hydrolytic degradation properties of two nanocomposites were investigated by hydrolytic degradation test. It was confirmed that the crystallinity of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposite was increased with increasing Clay-20 content and the Clay-20 is miscible with PLA and PLA/PBS resin from DSC and SEM results. Tensile strength of two nanocomposites was decreased, but thier elongation, impact strength, tensile modulus and flexural modulus were increased with an increase of Clay-20 content. The impact strength of PLA/Clay-20 and PLA/PBS/Clay-20 nanocomposites with 5 wt% of Clay-20 content was increased above twice than that of pure PLA and PLA/PBS (90/10). The hydrolytic degradation rate of PLA/Clay-20 nanocomposite with 3 wt% of Clay-20 content was accelerated about twice than that of pure PLA. The reason is that degradation may occur in the PLA and Clay-20 interface easily because of hydrophilic property of organic Clay-20. It was confirmed that a proper amount of Clay-20 can improve the mechanical properties of PLA and can control biodegradable property of PLA.

Preparation and Properties of Biodegradable Superabsorbent Gels Based on Poly(aspartic acid)s with Amino Acid Pendants (아미노산 곁사슬 치환 폴리아스팔트산계 생분해성 고흡수성 젤의 제조와 물성)

  • Son, Chang-Mo;Jeon, Young-Sil;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.558-564
    • /
    • 2011
  • The biocompatibility and biodegradability of poly(amino acid) make them ideal candidates for many bio-related applications. Poly(aspartic acid), PASP, is one of synthetic water-soluble polymers with proteinlike structure, and has been extensively explored for the potential industrial and biomedical applications due to its biodegradable, biocompatible and pH-responsive properties. In this work, amino acid-conjugated PASPs were prepared by aminolysis reaction onto polysuccinimide (PSI) using ${\gamma}$-aminobutylic acid(GABA) and ${\beta}$-alanine methyl ester and a subsequent hydrolysis process. Their chemical gels were prepared by crosslinking reaction with ethylene glycol diglycidyl ether (EGDE). The hydrogels were investigated for their basic swelling behavior, hydrolytic degradation and morphology. The crosslinked gels showed a responsive swelling behavior, which was dependent on pH and salt concentration in aqueous solution, and relatively fast hydrolytic degradation.

A New Intermediate in the Degradation of Carbofuran by Sphingomonas sp. Strain SB5

  • Park Myung-Ryeol;Lee Sun-Woo;Han Tae-Ho;Oh Byung-Tack;Shim Jae-Han;Kim In-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1306-1310
    • /
    • 2006
  • Sphingomonas sp. strain SB5 could degrade carbofuran and carbofuran-7-phenol to a hydrolytic product, 2-hydroxy-3-(3-methlypropan-2-o1)phenol, and several red metabolites. However, the chemical structures of the red metabolites have largely remained unidentified. In this study, we identified the structure of one of the red metabolites as 5-(2-hydroxy-2-methyl-propyl)-2,2-dimethyl- 2,3-dihydro-naphtho[2,3-6]furan-4,6,7,9-tetrone by using mass spectrometric and NMR ($^1$H, $^{13}$C) analyses. It is suggested that the red metabolite resulted from condensation of some metabolites in the degradation of 2-hydroxy-3-(3-methlypropan-2-o1)phenol, a hydrolytic product derived from carbofuran. To our knowledge, this is the first paper to report a red metabolite in bacterial degradation of the insecticide carbofuran.

Ultrastructural Studies on the Autolysis of Coprinellus congregatus (먹물버섯의 자가분해 과정에 대한 미세구조 연구)

  • Choi Hyung-Tae;Cho Chung-Won
    • Korean Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.312-315
    • /
    • 2005
  • Coprinellus congregatus, known as an inky cap, is autolysed into ink soon after the maturation of the mushrooms. Electron microscopy was used to examine the ultrastructural changes associated with the autolysis as an initial step to understand the role of hydrolytic enzymes in this process. During the early stages of maturation of the mushrooms, most of cytoplasm of hymenial and subhymenial tissues seemed to be transported to the developing basidiospores. The depletion of cytoplasm within the tissues and the maturation of the basidiospores may initiate the degradation of the cell walls of the tissues. Both hymenial and subhymenial tissues seemed to degraded at the same time. This study suggested that the critical steps in the autolysis of mushrooms is not the degradation of the cytoplasm, but the degradation of the cell wall by hydrolytic enzymes such as chitinases.

Hydrolytic Degradation of Synthetic Polytrimethylene Terephthalate and Characterization by MALDI-TOF Mass Spectrometry

  • Yang, Eun-Kyung;Jang, Sung-Woo;Cho, Young-Dal;Choe, Eun-Kyung;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.477-482
    • /
    • 2011
  • The structural analysis of polytrimethylene terephthalate (PTT) and characterization of the hydrolytic degradation products after acid hydrolysis were performed using MALDI-TOF mass spectrometry. Mass spectra of the PTT samples were analyzed using a self-calibration method as well as an internal calibration method with standard materials of known masses. PTT structures constituting the samples were determined from the analyses of the spectra, and their relative compositions were estimated. The MALDI-TOF mass spectra of the acid-hydrolyzed PTT sample showed three main series of oligomer products with different end groups in accordance with the hydrolysis schemes. From the spectra of both $Na^+$ and $K^+$ adducts, it was concluded that the PTT samples have higher affinity for $Na^+$ compared with $K^+$ and therefore show higher ionization efficiency with sodium ions when dithranol is used as a matrix. Two different wavelength laser beams ($\lambda$ = 337 nm and 355 nm) were tested and it was observed that the 355 nm beam was more efficient in obtaining the MALDI spectra of PTT using dithranol as a matrix under our experimental conditions.

Study on Hydrolytic Kinetics of Langmuir Monolayers of Biodegradable Polylactide Derivatives

  • Lee, Jin-Kook;Ryou, Jin-Ho;Lee, Won-Ki;Park, Chan-Young;Park, Sang-Bo;Min, Seong-Kee
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.476-480
    • /
    • 2003
  • The rate of hydrolysis of Langmuir monolayer films of biodegradable polylactide (PLA) derivates was investigated at the air/water interface. The present study investigated such parameters as surface pressure, pH, and time. The hydrolysis of polyester monolayers depended strongly on the subphase pH, the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to acidic or neutral subphases. By increasing the concentration of the degradation medium, the hydrolytic rate of dl-PLA monolayers was accelerated (accelerating effect). In addition, the basic hydrolysis of modified PLA with small amounts of hydrophilic (benzyloxycarbonyl) methyl morpholine-2,5-dione or glycolide was much faster than that of the PLA homopolymer.

Effects of Enzyme Application Method and Levels and Pre-treatment Times on Rumen Fermentation, Nutrient Degradation and Digestion in Goats and Steers

  • Hong, S.H.;Lee, B.K.;Choi, N.J.;Lee, Sang S.;Yun, S.G.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.389-393
    • /
    • 2003
  • Present study investigate the effect of enzyme supplementation, methods (applied to rumen or enzyme treated diet) compared with no enzyme diet, on rumen fermentation and apparent nutrient digestibility in a $3{\times}3$ Latin square design with three rumen cannulated Korean Native goats. In situ rumen degradation kinetics was studied in three rumen cannulated Holstein steers. Three diets were, no enzyme, 1% enzyme in rumen and 1% enzyme in diet. The enzyme was sprayed onto forage, and the forage: concentrate ratio was 30:70. Degradation kinetics was studied with three enzyme levels (0, 1 and 2%, w/w) and four pre-treatment times (0, 1, 12 and 24 h). Results suggested that enzyme application method did not affect rumen fermentation, ruminal enzyme activity and total tract apparent digestibility. Nutrient degradation rate and effective degradability of DM, NDF and ADF increased with increasing enzyme level and pre-treatment times. Degradation of nutrients was affected by enzymes levels or pre-treatment times. Therefore, it is probable that the improved degradation may be due to the supplemented exogenous hydrolytic enzymes under a certain condition.

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping;Cao, Mengjie;Wu, Jun;Xu, Weilin
    • Macromolecular Research
    • /
    • v.17 no.12
    • /
    • pp.1025-1031
    • /
    • 2009
  • Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.