Study on Hydrolytic Kinetics of Langmuir Monolayers of Biodegradable Polylactide Derivatives

  • Lee, Jin-Kook (Department of Polymer Science & Engineering, Pusan National University) ;
  • Ryou, Jin-Ho (Technical Research Laboratories, POSCO) ;
  • Lee, Won-Ki (Division of Chemical Engineering, Pukyong National University) ;
  • Park, Chan-Young (Division of Chemical Engineering, Pukyong National University) ;
  • Park, Sang-Bo (Division of Chemical Engineering, Pukyong National University) ;
  • Min, Seong-Kee (Division of Chemical Engineering, Pukyong National University)
  • Published : 2003.12.01

Abstract

The rate of hydrolysis of Langmuir monolayer films of biodegradable polylactide (PLA) derivates was investigated at the air/water interface. The present study investigated such parameters as surface pressure, pH, and time. The hydrolysis of polyester monolayers depended strongly on the subphase pH, the concentration of active ions. Under the conditions studied here, polymer monolayers showed faster rates of hydrolysis when they were exposed to a basic subphase rather than they did when exposed to acidic or neutral subphases. By increasing the concentration of the degradation medium, the hydrolytic rate of dl-PLA monolayers was accelerated (accelerating effect). In addition, the basic hydrolysis of modified PLA with small amounts of hydrophilic (benzyloxycarbonyl) methyl morpholine-2,5-dione or glycolide was much faster than that of the PLA homopolymer.

Keywords

References

  1. Degradable Polymers G.Scott;D.Gilead
  2. Macromolecules v.25 A.J.Nijenhuis;D.W.Grijpma;A.J>Pennings https://doi.org/10.1021/ma00050a006
  3. Polymer v.36 H.Tsuji;Y.Idada https://doi.org/10.1016/0032-3861(95)93647-5
  4. Macromol. Res. v.10 S.H.Lee;S.H.Kim;Y.H.Kim;Y.K.Han https://doi.org/10.1007/BF03218295
  5. Macromol. Res. v.11 C.W.Lee;Y.Kimura https://doi.org/10.1007/BF03218276
  6. Macromolecules v.22 T.Mathisen;K.Masus;A.Albertsson https://doi.org/10.1021/ma00200a004
  7. Macromolecules v.29 M.C.Davies;K.M.Shakesheff;A.G.Shard;A.Domb;C.J.Roberts;S.J>B.Tendler;P.M.Williams https://doi.org/10.1021/ma950889h
  8. Polymer v.39 D.Mallarde;M.Valiere;C.David;M.Menet;Ph.Guerin https://doi.org/10.1016/S0032-3861(97)10172-0
  9. Macromolecules v.31 L.A.Madden;A.J.Anderson;J.Asrar https://doi.org/10.1021/ma980606w
  10. Macromolecules v.28 G.Lambeek;E.J.Vorenkamp;A.J.Schouten https://doi.org/10.1021/ma00110a041
  11. Colloid Polym. Sci. v.275 N.Vila;J.Minones;E.Iribarnegaray;O.Conde;M.Casas https://doi.org/10.1007/s003960050121
  12. Colloid Surface B v.8 T.Ivanova;I.Panaiotov;F.Boury;J.P.Benoit;R.Verger https://doi.org/10.1016/S0927-7765(96)01331-8
  13. Langmuir v.1 K.C.O'Brien;J.B.Lando https://doi.org/10.1021/la00065a002
  14. Langmuir v.16 W.K.Lee;J.A.Gardella,JR. https://doi.org/10.1021/la990800r
  15. Langmuir v.18 W.K.Lee;R.W.Norwak;J.A.Gardella,Jr. https://doi.org/10.1021/la011663c
  16. Macromolecules v.31 D.Wang;X.D.Feng https://doi.org/10.1021/ma971446b
  17. J. Appl. Polym. Sci. v.33 R.M.Cinde;R.K.Gupta https://doi.org/10.1002/app.1987.070330712
  18. J. Microencapsulation v.3 K.Makino;H.Ohshima;T.Kondo https://doi.org/10.3109/02652048609031574