Browse > Article

Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid  

Zhao, Sanping (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering)
Cao, Mengjie (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering)
Wu, Jun (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering)
Xu, Weilin (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering)
Publication Information
Macromolecular Research / v.17, no.12, 2009 , pp. 1025-1031 More about this Journal
Abstract
Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.
Keywords
photopolymerization; temperature sensitivity; pH sensitivity; hydrolytic degradation; drug delivery;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 S. Shinji, O. Masayuki, and I. Isao, Macromolecules, 40, 3394 (2007)   DOI   ScienceOn
2 S. P. Jin, M. Z. Liu, F. Zhang, S. L. Chen, and A. Z. Niu, Polymer, 47, 1526 (2006)   DOI   ScienceOn
3 M. Akira, Y. Ryo, and K. Kazunori, Biomacromolecules, 5, 1038 (2004)   DOI   ScienceOn
4 Y. H. Bae, T. Okano, R. Hsu, and S. W. Kim, Macromol. Chem. Rapid Commun., 8, 481 (1987)   DOI
5 X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung, Langmuir, 18, 2013 (2002)   DOI   ScienceOn
6 H. Tanii and K. Hashimoto, Archives of Toxicology, 54, 203 (1983)   DOI   ScienceOn
7 S. P. Zhao, L. M. Zhang, D. Ma, C. Yang, and L. Yan, J. Phys. Chem. B, 110, 16503 (2006)   DOI   ScienceOn
8 G. H. Chen and A. S. Hoffman, Nature, 373, 49 (1995)   DOI   ScienceOn
9 P. L. Rigter and N. A. Peppas, J. Control. Rel., 5, 37 (1987)   DOI   ScienceOn
10 R. Silva and M. G. Oliveira, Polymer, 48, 4114 (2007)   DOI   ScienceOn
11 H. Chen and Y. L. Hsieh, J. Polym. Sci. Part A: Polym. Chem., 42, 6331 (2004)   DOI   ScienceOn
12 J. C. Ha, S. Y. Kim, and Y. M. Lee, J. Control. Rel., 62, 381 (1999)   DOI   ScienceOn
13 E. Kokufuta, B. Wang, R. Yoshida, A. R. Khokhlov, and M. Hirata, Macromolecules, 31, 6878 (1998)   DOI   ScienceOn
14 W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee, Biomacromolecules, 6, 2930 (2005)   DOI   ScienceOn
15 L. D. Taylor and L. D. Cerankowski, J. Polym. Sci. Part A: Polym. Chem., 13, 2551 (1975)   DOI   ScienceOn
16 J. H. Ha, S. H. Kim, S. Y. Han, Y. K. Sung, Y. M. Lee, I. K. Kang, and C. S. Cho, J. Control. Rel., 49, 253 (1997)   DOI   ScienceOn
17 M. R. Guilherme, R. Silva, E. M. Girotto, A. F. Rubira, and E. C. Muniz, Polymer, 44, 4213 (2003)   DOI   ScienceOn
18 S. C. Woodward, P. S. Brewer, F. Moatamed, A. Schindler, and C. G. Pitt, J. Biomed. Mater. Res., 19, 437 (1985)   DOI   ScienceOn
19 X. J. Loh, S. H. Goh, and J. Li, Biomaterials, 28, 4113 (2007)   DOI   ScienceOn
20 X. J. Loh, S. H. Goh, and J. Li, Biomacromolecules, 8, 585 (2007)   DOI   ScienceOn
21 K. S. Soppimath, L. H. Liu, W. Y. Seow, S. Q. Liu, R. Powell, P. Chan, and Y. Y. Yang, Adv. Funct. Mater., 17, 355 (2007)   DOI   ScienceOn
22 J. M. Suh, S. J. Bae, and B. Jeong, Adv. Mater., 17, 118 (2005)   DOI   ScienceOn
23 J. T. Zhang, S. W. Huang, S. X. Cheng, and R. X. Zhuo, J. Polym. Sci. Part A: Polym. Chem., 42, 1249 (2004)   DOI   ScienceOn
24 T. Tanaka, I. Nishio, S. T. Sun, and S. Ueno-Nishio, Science, 218, 467 (1982)   DOI   PUBMED   ScienceOn
25 S. S. Kim, Y. M. Lee, and C. S. Cho, Polymer, 36, 4497 (1995)   DOI   ScienceOn
26 Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001)   DOI   ScienceOn
27 D. T. Pual, R. H. Jonathan, J. C. Colin, P. A. Steven, A. L. J. Richard, and J. R. Anthony, Macromolecules, 40, 4393 (2007)   DOI   ScienceOn
28 P. Chandaroy, A. Sen, and S. W. Hui, J. Control. Rel., 76, 27 (2001)   DOI   ScienceOn
29 S. Beltran, J. P. Bakai, H. H. Hooper, H. W. Blanch, and M. Prausnitz, Macromolecules, 24, 549 (1991)   DOI