Synthesis and Characterization of Biodegradable Thermo- and pH-Sensitive Hydrogels Based on Pluronic F127/Poly($\varepsilon$-caprolactone) Macromer and Acrylic Acid

  • Zhao, Sanping (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering) ;
  • Cao, Mengjie (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering) ;
  • Wu, Jun (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering) ;
  • Xu, Weilin (Key Laboratory of Green Processing and Functional Textiles of New Textile Materials of Ministry of Education, Wuhan University of Science and Engineering)
  • Published : 2009.12.25

Abstract

Several kinds of biodegradable hydrogels were prepared via in situ photopolymerization of Pluronic F127/poly($\varepsilon$-caprolactone) macromer and acrylic acid (AA) comonomer in aqueous medium. The swelling kinetics measurements showed that the resultant hydrogels exhibited both thermo- and pH-sensitive behaviors, and that this stimuli-responsiveness underwent a fast reversible process. With increasing pH of the local buffer solutions, the pH sensitivity of the hydrogels was increased, while the temperature sensitivity was decreased. In vitro hydrolytic degradation in the buffer solution (pH 7.4, $37^{\circ}C$), the degradation rate of the hydrogels was greatly improved due to the introduction of the AA comonomer. The in vitro release profiles of bovine serum albumin (BSA) in-situ embedded into the hydrogels were also investigated: the release mechanism of BSA based on the Peppas equation was followed Case II diffusion. Such biodegradable dual-sensitive hydrogel materials may have more advantages as a potentially interesting platform for smart drug delivery carriers and tissue engineering scaffolds.

Keywords

References

  1. S. Shinji, O. Masayuki, and I. Isao, Macromolecules, 40, 3394 (2007) https://doi.org/10.1021/ma062365v
  2. D. T. Pual, R. H. Jonathan, J. C. Colin, P. A. Steven, A. L. J. Richard, and J. R. Anthony, Macromolecules, 40, 4393 (2007) https://doi.org/10.1021/ma071041j
  3. T. Tanaka, I. Nishio, S. T. Sun, and S. Ueno-Nishio, Science, 218, 467 (1982) https://doi.org/10.1126/science.218.4571.467
  4. S. P. Jin, M. Z. Liu, F. Zhang, S. L. Chen, and A. Z. Niu, Polymer, 47, 1526 (2006) https://doi.org/10.1016/j.polymer.2006.01.009
  5. M. Akira, Y. Ryo, and K. Kazunori, Biomacromolecules, 5, 1038 (2004) https://doi.org/10.1021/bm0345413
  6. Y. H. Bae, T. Okano, R. Hsu, and S. W. Kim, Macromol. Chem. Rapid Commun., 8, 481 (1987) https://doi.org/10.1002/marc.1987.030081002
  7. K. S. Soppimath, L. H. Liu, W. Y. Seow, S. Q. Liu, R. Powell, P. Chan, and Y. Y. Yang, Adv. Funct. Mater., 17, 355 (2007) https://doi.org/10.1002/adfm.200500611
  8. W. S. Shim, J. S. Yoo, Y. H. Bae, and D. S. Lee, Biomacromolecules, 6, 2930 (2005) https://doi.org/10.1021/bm050521k
  9. J. M. Suh, S. J. Bae, and B. Jeong, Adv. Mater., 17, 118 (2005) https://doi.org/10.1002/adma.200400905
  10. M. R. Guilherme, R. Silva, E. M. Girotto, A. F. Rubira, and E. C. Muniz, Polymer, 44, 4213 (2003) https://doi.org/10.1016/S0032-3861(03)00370-7
  11. L. D. Taylor and L. D. Cerankowski, J. Polym. Sci. Part A: Polym. Chem., 13, 2551 (1975) https://doi.org/10.1002/pol.1975.170131113
  12. H. Chen and Y. L. Hsieh, J. Polym. Sci. Part A: Polym. Chem., 42, 6331 (2004) https://doi.org/10.1002/pola.20461
  13. X. Z. Zhang, Y. Y. Yang, F. J. Wang, and T. S. Chung, Langmuir, 18, 2013 (2002) https://doi.org/10.1021/la011325b
  14. R. Silva and M. G. Oliveira, Polymer, 48, 4114 (2007) https://doi.org/10.1016/j.polymer.2007.05.010
  15. H. Tanii and K. Hashimoto, Archives of Toxicology, 54, 203 (1983) https://doi.org/10.1007/BF01239204
  16. Y. Qiu and K. Park, Adv. Drug Deliv. Rev., 53, 321 (2001) https://doi.org/10.1016/S0169-409X(01)00203-4
  17. J. T. Zhang, S. W. Huang, S. X. Cheng, and R. X. Zhuo, J. Polym. Sci. Part A: Polym. Chem., 42, 1249 (2004) https://doi.org/10.1002/pola.11092
  18. X. J. Loh, S. H. Goh, and J. Li, Biomacromolecules, 8, 585 (2007) https://doi.org/10.1021/bm0607933
  19. X. J. Loh, S. H. Goh, and J. Li, Biomaterials, 28, 4113 (2007) https://doi.org/10.1016/j.biomaterials.2007.05.016
  20. J. C. Ha, S. Y. Kim, and Y. M. Lee, J. Control. Rel., 62, 381 (1999) https://doi.org/10.1016/S0168-3659(99)00167-4
  21. P. Chandaroy, A. Sen, and S. W. Hui, J. Control. Rel., 76, 27 (2001) https://doi.org/10.1016/S0168-3659(01)00429-1
  22. J. H. Ha, S. H. Kim, S. Y. Han, Y. K. Sung, Y. M. Lee, I. K. Kang, and C. S. Cho, J. Control. Rel., 49, 253 (1997) https://doi.org/10.1016/S0168-3659(97)00096-5
  23. S. C. Woodward, P. S. Brewer, F. Moatamed, A. Schindler, and C. G. Pitt, J. Biomed. Mater. Res., 19, 437 (1985) https://doi.org/10.1002/jbm.820190408
  24. S. P. Zhao, L. M. Zhang, D. Ma, C. Yang, and L. Yan, J. Phys. Chem. B, 110, 16503 (2006) https://doi.org/10.1021/jp063005c
  25. S. S. Kim, Y. M. Lee, and C. S. Cho, Polymer, 36, 4497 (1995) https://doi.org/10.1016/0032-3861(95)96859-7
  26. E. Kokufuta, B. Wang, R. Yoshida, A. R. Khokhlov, and M. Hirata, Macromolecules, 31, 6878 (1998) https://doi.org/10.1021/ma971565r
  27. G. H. Chen and A. S. Hoffman, Nature, 373, 49 (1995) https://doi.org/10.1038/373049a0
  28. S. Beltran, J. P. Bakai, H. H. Hooper, H. W. Blanch, and M. Prausnitz, Macromolecules, 24, 549 (1991) https://doi.org/10.1021/ma00002a032
  29. P. L. Rigter and N. A. Peppas, J. Control. Rel., 5, 37 (1987) https://doi.org/10.1016/0168-3659(87)90035-6