• 제목/요약/키워드: Hydrologic estimation

검색결과 236건 처리시간 0.032초

Mallows의 $C_L$ 통계량을 이용한 수문응답 추정 (Hydrologic Response Estimation Using Mallows' $C_L$ Statistics)

  • 성기원;심명필
    • 한국수자원학회논문집
    • /
    • 제32권4호
    • /
    • pp.437-445
    • /
    • 1999
  • 비모수능형회귀분석법을 이용하여 수문응답을 추정하는 방안에 대하여 연구하였다. 응답을 추정하기 위하여 평균제곱예측오차에 대한 추정량인 CL 통계량을 최소화하는 방법을 적용하였으며 가중행렬은 전통적으로 이용도는 단위행렬과 특수한 형태인 행렬인 Laplacian 행렬을 각각 이용하여 비교하였다. 또한 추정응답의 오차분산을 추정하는 방안에 대한 검토도 실행하였다. 합성자료와 실제자료에 대한 분석 결과 가중행렬과 Laplacian 행렬을 오차분산은 편기 수정된 추정치를 이용하는 것이 좋은 결과를 보여 주었다. 본 연구에서 제시된 절차 및 방법은 수문응답 분리에 있어서 안정적이고 효율적으로 적용될 수 있을 것으로 판단된다.

  • PDF

장기유출 수문모형을 이용한 하천수질모형의 기준유량 산정 (Low Flow Estimation for River Water Quality Models using a Long-Term Runoff Hydrologic Model)

  • 김상단;이건행;김형수
    • 한국물환경학회지
    • /
    • 제21권6호
    • /
    • pp.575-583
    • /
    • 2005
  • In this study the flow curve estimation is discussed using TANK model which is one of hydrologic models. The main interest is the accuracy of TANK model parameter estimation with respect to the sampling frequency of input data. For doing this, input data with various sampling frequencies is used to estimate model parameters. As a result, in order to generate relatively accurate flow curve, it is recommendable to measure stream flow at least every 8 days.

지리정보시스템을 이용한 수문모형의 전처리시스템 개발 (Development of PRe-processor for Hydrologic Geographic Information System)

  • 전종안;박승우;강문성;김상민
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.493-498
    • /
    • 1999
  • To extract hydrologic information more easily , the pre-processor for hydrologic model using Geographic Information System was developed . This model was applied to the Balan-reservoir watershed which is located at the southwest of Suwon. For estimation SCS curve number, landuse map and hydrologic soil group map were collected from digital map and reconnaissance soil map respectively. The estimated curve number from the GIS technique was 73.

  • PDF

대체함수에 의한 수문 시계열 모형 (Hydrologic Time Series Model by Transfer Function)

  • 강관원;김주환
    • 물과 미래
    • /
    • 제24권3호
    • /
    • pp.61-70
    • /
    • 1991
  • 본 연구는 이산형 선형 대체함수(discrete linear transfer function)를 이용하여 수문시스템의 입력과 출력으로 나타낼 수 있는 강우와 유출의 관계를 통계학적으로 분석하고 모형화 하는 것이다. 모형의 설정 및 특정(identification), 추정(estimation) 및 검토(diagnostic checking) 과정이 제시되었으며 모형에 대한 적합성은 시계열 분석에서 이용되고 있는 통계량으로 판정하였다.

  • PDF

GIS를 이용한 기저-유출 바탕의 수문모델 (Store-Release based Distributed Hydrologic Model with GIS)

  • 강광민;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

토양수분 저류 기반의 간결한 준분포형 수문분할모형 개발 (Development of Parsimonious Semi-Distributed Hydrologic Partitioning Model Based on Soil Moisture Storages)

  • 최정현;김령은;김상단
    • 한국물환경학회지
    • /
    • 제36권3호
    • /
    • pp.229-244
    • /
    • 2020
  • Hydrologic models, as a useful tool for understanding the hydrologic phenomena in the watershed, have become more complex with the increase of computer performance. The hydrologic model, with complex configurations and powerful performance, facilitates a broader understanding of the effects of climate and soil in hydrologic partitioning. However, the more complex the model is, the more effort and time is required to drive the model, and the more parameters it uses, the less accessible to the user and less applicable to the ungauged watershed. Rather, a parsimonious hydrologic model may be effective in hydrologic modeling of the ungauged watershed. Thus, a semi-distributed hydrologic partitioning model was developed with minimal composition and number of parameters to improve applicability. In this study, the validity and performance of the proposed model were confirmed by applying it to the Namgang Dam, Andong Dam, Hapcheon Dam, and Milyang Dam watersheds among the Nakdong River watersheds. From the results of the application, it was confirmed that despite the simple model structure, the hydrologic partitioning process of the watershed can be modeled relatively well through three vertical layers comprising the surface layer, the soil layer, and the aquifer. Additionally, discussions were conducted on antecedent soil moisture conditions widely applied to stormwater estimation using the soil moisture data simulated by the proposed model.

수질학적 관점에서의 수문모델 유출량 보정 방법 평가 (Evaluating Calibration Methods of Stream Flow for Water Quality Management)

  • 전지홍;최동혁;김정진;김태동
    • 한국물환경학회지
    • /
    • 제25권3호
    • /
    • pp.432-440
    • /
    • 2009
  • The effect of selecting hydrologic item for calculating objective function on calibration of stream flow was evaluated by Hydrologic Simulation Porgram-Fortran (HSPF) linked with Model Independent Parameter Optimizer (PEST). Daily and monthly stream flow and flow duration were used to calculate objective function. Automated calibration focused on monthly stream was proper to analyze seasonal or yearly water budget but not proper to predict daily stream flow or percent chance flow exceeded. Calibration result focused on flow duration is proper to predict precent chance flow exceeded but not proper to analyze water budget or predict peak flow. These results indicate that hydrologic item calculated for objective function on calibration procedure could influence calibration results and watershed modeler should select carefully hydrologic item for the purpose of model application. Current, the criteria of stream flow of Korean TMDL is generated based on percent chance flow exceeded, so flow duration should be included to calculate objective function on calibration procedure for the estimation of criteria of stream flow using hydrologic model.

하천망과 구릉지사면 사이의 상호작용에 따른 수문학적 응답함수의 거동특성 분석 (Analysis of Behavioral Properties for Hydrologic Response Function according to the Interaction between Stream Network and Hillslope)

  • 윤여진;김주철
    • 한국물환경학회지
    • /
    • 제27권5호
    • /
    • pp.661-669
    • /
    • 2011
  • The purpose of this study is quantitative analysis of the effects of the interactions between stream network and hillslope to hydrologic response functions. To this end general formulation of hydrologic response function is performed based on width function and grid framework. Target basins are Ipyeong and Tanbu basins. From the results of width function estimation even similar sized and closely located basins could have very different hydrologic response function. It is found out that the interactions between stream network and hillslope are essential factors of rainfall-runoff processes because their difference can make the hydrologic response function with positive skewness. The change of velocities of stream network and hillslope might influence the magnitude of peak but time to peak tends to more sensitively respond to velocities of stream network. Lag time of basin would be the result of complex interaction between drainage structures and dynamic properties of river basin.