• Title/Summary/Keyword: Hydrologic data

Search Result 659, Processing Time 0.031 seconds

Development of Distributed Hydrological Analysis Tool for Future Climate Change Impacts Assessment of South Korea (전국 기후변화 영향평가를 위한 분포형 수문분석 툴 개발)

  • Kim, Seong Joon;Kim, Sang Ho;Joh, Hyung Kyung;Ahn, So Ra
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.15-26
    • /
    • 2015
  • The purpose of this paper is to develop a software tool, PGA-CC (Projection of hydrology via Grid-based Assessment for Climate Change) to evaluate the present hydrologic cycle and the future watershed hydrology by climate change. PGA-CC is composed of grid-based input data pre-processing module, hydrologic cycle calculation module, output analysis module, and output data post-processing module. The grid-based hydrological model was coded by Fortran and compiled using Compaq Fortran 6.6c, and the Graphic User Interface was developed by using Visual C#. Other most elements viz. Table and Graph, and GIS functions were implemented by MapWindow. The applicability of PGA-CC was tested by assessing the future hydrology of South Korea by HadCM3 SRES B1 and A2 climate change scenarios. For the whole country, the tool successfully assessed the future hydrological components including input data and evapotranspiration, soil moisture, surface runoff, lateral flow, base flow etc. From the spatial outputs, we could understand the hydrological changes both seasonally and regionally.

An Analysis of Temporal Characteristic Change for Various Hydrologic Weather Parameters (II ) - On the Variability, Periodicity - (각종 수문기상인자의 경년별 특성변화 분석 (II) - 변동성, 주기성을 중심으로 -)

  • Lee, Jae-Joon;Jang, Joo-Young;Kwak, Chang-Jae
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.5
    • /
    • pp.483-493
    • /
    • 2010
  • In this study, for the purpose of analyzing variability and periodicity of Korean hydrologic weather parameters, 5 hydrologic weather parameters data such as annual precipitation, annual rainy days, annual average temperature, annual average relative humidity, annual duration of sunshine are collected from 63 domestic meteorological stations that has the hydrologic weather parameters records more than 30 years. And in this study the variability and periodicity using the statistical methods like Wald-Wolfowitz test, Mann-Whitney test, and Wavelet Transform about hydrologic weather parameters is analyzed. The results of statistical analysis of variability and periodicity can be summarized as follows: 1) Variability commonly appeared in annual average temperature and annual average relative humidity. 2) Annual precipitation, annual rainy days and annual duration of sunshine showed different results according to area. 3) Periodicity appeared in annual precipitation and annual rainy days but did not appeard in annual average temperature, annual average relative humidity and annual duration of sunshine.

An Implementation of Expression System and Model for Automatic Creation of Flooding Area in the river (하천범람 영역 자동생성 모델 및 표출 시스템 구현)

  • Choi, Eun-Hye;Hwang, Hyun-Suk;Kim, Chang-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.654-660
    • /
    • 2012
  • The goal of this paper is to calculate flood elevation by applying temporal distribution of rainfall through HEC-RAS(Hydrologic Engineering Center's River Analysis System) and to automatically create areas of flooding by a user-defined spatial model based on GIS using calculated values of flood elevation and detailed data of topography. Accuracy of topographic data is the most important factor because of deeply changing analysis results of flooding areas of a river. Therefore, this paper suggests a method of attributive and spatial data construction based on the GIS using UIS(Urban Information System, river-related reports, and hydrologic information. Also, we implement an expression system to provide analysis results extracted from the proposed model.

Sensitivity Analysis of the Runoff Model Parameter for the Optimal Design of Hydrologic Structures (수공구조물의 적정설계를 위한 유출모형 매개변수의 민감도 분석)

  • Lee, Jung-Hoon;Kim, Mun-Mo;Yeo, Woon-Kwang
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.755-758
    • /
    • 2008
  • Currently, the increased run-off and the shortened arrival time are one of the causes of the city environmental disasters in urbanization. Therefore, it is necessary to properly design the hydrologic structures, but it is very difficult to forecast the values necessary to design from the planning stage. Moreover, as the parameter is changed due to the urban development, it is difficult not only to analyze the run-off influences but also to find the related studies and literatures. The purpose of this study is to utilize the results as the important basic data of the hydrologic structures, its proper design and run-off influences through the sensibility analysis of the model parameter variables. In this study, the absolute and relative sensibility analysis method were used to find out the correlation through the sensibility analysis of the topology and hydrology parameters. Especially, in this study, the changes in the run-off amount and volume were calculated according to increase/decrease in CN, the coefficient of discharge, and the empirical formula is prepared and proposed through the regressive analysis among the parameters. In the meantime, the parameter sensibility analysis was performed through the simulation HEC-HMS that is used and available in Korea. From the results of this study, it was found that the run-off amount is increased about by 10% when the CN value is increased by 5% before and after the development through the HEC-HMS simulation and data analysis. As long as there will be additional data collection analysis and result verification, and continuous further studies to find out the parameters proper to the domestic circumstances, it is expected to considerably contribute to the proper design of the hydrologic structures with respect to the ungauged basin.

  • PDF

Assessment of Hydrologic Risk of Extreme Drought According to RCP Climate Change Scenarios Using Bivariate Frequency Analysis (이변량 빈도분석을 이용한 RCP 기후변화 시나리오에 따른 극한가뭄의 수문학적 위험도 평가)

  • Park, Ji Yeon;Kim, Ji Eun;Lee, Joo-Heon;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.561-568
    • /
    • 2019
  • Recently, Korea has suffered from severe droughts due to climate change. Therefore, we need to pay attention to the change of drought risk to develop appropriate drought mitigation measures. In this study, we investigated the changes of hydrologic risk of extreme drought using the current observed data and the projected data according to the RCP 4.5 and 8.5 climate change scenarios. The bivariate frequency analysis was performed for the paired data of drought duration and severity extracted by the threshold level method and by eliminating pooling and minor droughts. Based on the hydrologic risk of extreme drought events Jeonbuk showed the highest risk and increased by 51 % than the past for the RCP 4.5 scenario, while Gangwon showed the highest risk and increased by 47 % than the past for the RCP 8.5 scenario.

Evaluation of Hydrological Impacts Caused by Land Use Change (토지이용변화에 따른 수문영향분석)

  • Park, Jin-Yong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.5
    • /
    • pp.54-66
    • /
    • 2002
  • A grid-based hydrological model, CELTHYM, capable of estimating base flow and surface runoff using only readily available data, was used to assess hydrologic impacts caused by land use change on Little Eagle Creek (LEC) in Central Indiana. Using time periods when land use data are available, the model was calibrated with two years of observed stream flow data, 1983-1984, and verified by comparison of model predictions with observed stream flow data for 1972-1974 and 1990-1992. Stream flow data were separated into direct runoff and base flow using HYSEP (USGS) to estimate the impacts of urbanization on each hydrologic component. Analysis of the ratio between direct runoff and total runoff from simulation results, and the change in these ratios with land use change, shows that the ratio of direct runoff increases proportionally with increasing urban area. The ratio of direct runoff also varies with annual rainfall, with dry year ratios larger than those for wet years shows that urbanization might be more harmful during dry years than abundant rainfall years in terms of water yield and water quality management.

A Study on the Interpolation of Missing Rainfall : 1. Methodologies and Weighting Factors (결측 강우량 보정방법에 관한 연구: 1. 방법론 및 가중치 산정)

  • Kim Eung-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.684-689
    • /
    • 2006
  • Rainfall is the most basic input data to analyze the hydrologic system. When we measure the rainfall data, the rainfall data can be missing due to various reasons. Therefore, various interpolation methods are available for compensating the missing data. However, the interpolation methods were used without considering their applicability and accuracy. This study compares the interpolation methods such as the arithmetic mean method, normal ratio method, modified normal ratio method, inverse distance method, linear programming, Kriging method to estimate the existing rainfall correction method.

  • PDF

Urban Hydrologic Monitoring due to Internet Hydrologic Monitoring System (인터넷 수문관측시스템을 이용한 도시수문 모니터링)

  • Seo, Kyu Woo;Kim, Nam Gil;Na, Hyun Woo;Lee, In Rock
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1321-1325
    • /
    • 2004
  • The continuous monitoring of the runoff in the small-scaled urban watershed and easily accessible experiment catchment is necessary to investigate the overall status of the development in the urban catchment and the varying aspects of the discharge characteristics due to the urbanization. However, the research on the management and the characteristics of the small-scaled model basin for discharge tests has not been actively performed up to now. This study selects the Dong-Eui university basin, which locates at Gaya-dong in Busan, as the experiment catchment to monitor the discharge rate in the urban watershed. EMS(DEMS, DATA-PCS EMS, mini rain gage & AWS(AWS-DEU, DATA-PCS AWS) monitoring system installed for the collection of hydrological data such as the rainfall and the waterlevel. This experiment catchment is the typical urban catchment and is under development, and it is possible to analyze the varying aspects of the discharge rate during and after the development.

  • PDF

Prediction of Reservoir Water Level using CAT (CAT을 이용한 저수지 수위 예측)

  • Jang, Cheol-Hee;Kim, Hyeon-Jun;Kim, Jin-Taek
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.1
    • /
    • pp.27-38
    • /
    • 2012
  • This study is to analyse the hydrological behavior of agricultural reservoir using CAT (Catchment hydrologic cycle Assessment Tool). The CAT is a water cycle analysis model in order to quantitatively assess the characteristics of the short/long-term changes in watershed. It supports the effective design of water cycle improvement facilities by supplementing the strengths and weaknesses of existing conceptual parameter-based lumped hydrologic models and physical parameter-based distributed hydrologic models. The CAT especially supports the analysis of runoff processes in paddy fields and reservoirs. To evaluate the impact of agricultural reservoir operation and irrigation water supply on long-term rainfall-runoff process, the CAT was applied to Idong experimental catchment, operated for research on the rural catchment characteristics and accumulated long term data by hydrological observation equipments since 2000. From the results of the main control points, Idong, Yongdeok and Misan reservoirs, the daily water levels of those points are consistent well with observed water levels, and the Nash-Sutcliffe model efficiencies were 0.32~0.89 (2001~2007) and correlation coefficients were 0.73~0.98.

Hydrologic Response Estimation Using Mallows' $C_L$ Statistics (Mallows의 $C_L$ 통계량을 이용한 수문응답 추정)

  • Seong, Gi-Won;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.4
    • /
    • pp.437-445
    • /
    • 1999
  • The present paper describes the problem of hydrologic response estimation using non-parametric ridge regression method. The method adapted in this work is based on the minimization of the $C_L$ statistics, which is an estimate of the mean square prediction error. For this method, effects of using both the identity matrix and the Laplacian matrix were considered. In addition, we evaluated methods for estimating the error variance of the impulse response. As a result of analyzing synthetic and real data, a good estimation was made when the Laplacian matrix for the weighting matrix and the bias corrected estimate for the error variance were used. The method and procedure presented in present paper will play a robust and effective role on separating hydrologic response.

  • PDF