• Title/Summary/Keyword: Hydrologic Properties

Search Result 65, Processing Time 0.029 seconds

Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios (미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성)

  • Hwang, Syewoon;Her, Young Gu;Chang, Seungwoo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

The Analysis of Flood in an Ungauged Watershed using Remotely Sensed and Geospatial Datasets (I) - Focus on Estimation of Flood Discharge - (원격탐사와 공간정보를 활용한 미계측 유역 홍수범람 해석에 관한 연구(I) - 홍수량 산정을 중심으로 -)

  • Son, Ahlong;Kim, Jongpil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.781-796
    • /
    • 2019
  • This study attempted to simulate the flood discharge in the Duman River basin containing Hoeryong City and Musan County of North Korea where were damaged from Typhoon Lionrock on August, 2016. For hydrological modelling remotely sensed datasets were used to estimate watershed properties and hydrologic factors because the basin is ungauged where hydrological observation is not exist or sparse. For validation we applied our methodology and datasets to the Soyanggang Dam basin. It has not only similar shape factor and compactness ratio to those of the target basin but also accurate, adequate, and abundant measurements. The results showed that the flood discharge from Typhoon Lionrock corresponded to three to five years design floods in the Duman River basin. This indicate that the Duman River basin has a high risk of flood in the near future. Finally this study demonstrated that remotely sensed data and geographic information could be utilized to simulate flood discharge in an ungauged watershed.

Classification of Hydrologic Soil Groups of Soil Originated from Limestone by Assessing the Rates of Infiltration and Percolation (석회암 유래 토양의 침투 및 투수속도 평가에 따른 수문유형 분류)

  • Hur, Seung-Oh;Jung, Kang-Ho;Sonn, Yeon-Kyu;Ha, Sang-Keun;Kim, Jeong-Gyu;Kim, Nam-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.2
    • /
    • pp.103-109
    • /
    • 2009
  • Soils originated from limestone, located at the southern part of Kangwon province and Jecheon, Danyang of Chungbuk province are mainly composed of fine texture, and have different properties from soils originated from granite and granite gneiss, especially for water movement. This study was conducted for classification of hydrologic soil group (HSG) of soils originated from limestone by measuring the infiltration rate of surface soils and percolation rate of sub soils. Soils used for the experiment were 6 soils in total : Gwarim, Mosan, Jangseong, Maji, Anmi and Pyongan series. Infiltration and percolation rate were measured by a disc tension infiltrometer and a Guelph permeameter, respectively. Particle size distribution and organic matter content of the soils were analyzed. HSG, which was made by USDA NRCS(National Resources Conservation Service) for hydrology, of Gwarim series with O horizon of accumulated organic matter was classified as type A which show the properties of low runoff potential, rapid infiltration and percolation rate. HSG of Mosan series, which has high gravel content and very rapid permeability, was classified as type B/D because of the impermaeble base rock layer under 50cm from surface. HSG of Jangseong series with shallow soil depth was classified as type C/D owing to the impermaeble base rock layer under 50cm from surface. HSG of Maji series was type B, and HSG of Anmi series used as paddy land was type D because of slow infiltration and percolation rate caused by the disturbance of surface soil by puddling. HSG of Pyeongan series having a sudden change of layer in soil texture was type D because of the slow percolation rate caused a the layer.

Evaluation of Droughts in Seoul Using Two-Dimensional Drought Frequency Analysis (이차원 가뭄빈도해석을 통한 서울지역의 가뭄 평가)

  • Yeon, Je-Mun;Byun, Sung-Ho;Lee, Jung-Kyu;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • Drought characteristics need to be preceded before establishing a drought mitigation plan. In this study, using a Standardized Precipitation Index (SPI), a hydrologic drought was defined as an event during which the SPIs are continuously below a certain truncation level. Then, a methodology of drought frequency analysis was performed to quantitatively characterize droughts considering drought duration and severity simultaneously. The theory of runs was used to model drought recurrence and to determine drought properties like duration and severity. Short historical records usually do not allow reliable bivariate analyses. However, more than hundred years of precipitation data (1770 ${\sim}$ 1907) collected in Chosun Kingdom Age using an old Korean rain gage called Chukwooki can provide valuable information about past events. It is shown that a bivariate gamma distribution well represented the joint probabilistic properties of Korean drought duration and severity. The overall results of this study show that the proposed bivariate drought frequency analysis overcomes the drawbacks of the conventional univariate frequency analysis by providing a consistent representation of the drought recurrent property.

Hydrochemical and Isotopic Properties of the Thermal Spring Water from Chonju Jukrim District, Korea (전주 죽림지역 온천수의 화학적 및 동위원소적 특성)

  • Na, Choon-Ki;Lee, Mu-Seong;Lee, In-Sung;Park, Hee-Youl;Kim, Oak-Bae
    • Economic and Environmental Geology
    • /
    • v.30 no.1
    • /
    • pp.25-33
    • /
    • 1997
  • The purpose of this study is to examine the feasibility of using stable isotopes as a hydrologic tracer, and to elucidate the groundwater circulation system and the source of S component dissolved in thermal water of the Chonju Jukrim thermal spring district based on the O, H and S isotopic variabilities of environmental materials including bedrock, rainwater, surface water, shallow subsurface water and thermal spring water. The ${\delta}^{18}O$ and ${\delta}D$ of subsurface waters and surface water show highly restricted range and plotted on the same meteoric water line as a ${\delta}D=8{\delta}^{18}O+19$ line, and derivate from the mean annual isotopic composition of the rain water but are analogous to those of rain waters precipitated during winter season, indicating that ground waters are originated from the meteoric water and are strongly affected by the seasonal variation of air mass. Thermal spring waters are more depleted in ${\delta}^{18}O$ and ${\delta}D$ than those of shallow ground water and surface water. It can be explained by the difference of recharge area. The hydrochemical properties of subsurface waters and surface water devide into two groups: $Ca(HCO_3)_2$ type including shallow subsurface water and surface water, and $Na(HCO_3)$ type of thermal spring waters. The ${\delta}^{34}S$ values of thermal spring water show very high positive and quitely distinct from those of shallow subsurface water and surface water that are similar to those of bed rocks, indicating that sulfate dissolved in thermal spring water has not only a terrigenic origin, but also originates partially from the foreign source containing very heavy ${\delta}^{34}S$ component such as an ancient sea water. However, the presence of $H_2S$ can not be ignore the affact of the isotopic fractionation to explaine the heavy ${\delta}^{34}S$ of thermal spring water. Overall, the Oxygen and Hydrogen stable isotopes can identify the source and the circulation system of the natural waters and the S-isotopes can provide a crucial clue on tracing the dissolved material transports in the circulation system of the natural water.

  • PDF

Estimation of Volume-Area-Depth Relationship for Shallow Wetland (습지의 체적-면적-깊이에 대한 관계식 추정)

  • Kim, Jun-Gwon;Kim, Hyeong-Su;Jeong, Sang-Man
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.231-240
    • /
    • 2002
  • The wetland has very important functions in hydrologic and ecological aspects and the research of wetland functions requires the basic hydrological properties such as water quantity. However, we do not have a research work on the hydrological properties for a wetland study in Korea. Therefore, this study is to estimate the relations between the volume(V), the area(A), and the depth(h) of water in the wetland which might be the basis for the wetland research in Korea. To estimate the relations, we derive the basic equations, obtain the surveyed data and do modelling, and estimate the relations of A-h and V-h using the Surfer program. The estimated and observed volumes for 5-wetland are compared and the errors are in the range of 2 % to 11 % for 4-wetland and 34 % for the rest. The wetlands in small errors showed the similar ones with the profile of the wetted perimeter which is assumed for the derivation of the equation but the wetland of large error has much different profile with the assumed one. We re-estimate the volumes for 3-wetland(W3, W4, W5) which showed the large errors due to the bended profiles of the wetland slopes. say, after the slopes was divided into two parts of upper and lower ones, the volumes were estimated. From our re-estimation, we obtained very good results ranged from 1 % to 8 % in their errors. We conjecture that the procedure suggested in this study might be useful as a reference for the future research on the relations of V-A-h in Korea.

A Numerical Model for Analysis of Groundwater Flow with Heat Flow in Steady-State (열(熱)흐름을 동반(同伴)한 정상지하수(定常地下水)의 흐름해석(解析) 수치모형(數値模型))

  • Wang, Soo Kyun;Cho, Won Cheol;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.103-112
    • /
    • 1991
  • In this study, a numerical model was established and applied to simulate the steady-state groundwater and heat flow in an isotropic, heterogeneous, three dimensional aquifer system with uniform thermal properties and no change of state. This model was developed as an aid in screening large groundwater-flow systems as prospects for underground waste storage. Driving forces on the system are external hydrologic conditions of recharge from precipitation and fixed hydraulic head boundaries. Heat flux includes geothermal heat-flow, conduction to the land surface, advection from recharge, and advection to or from fixed-head boundaries. The model uses an iterative procedure that alternately solves the groundwater-flow and heat-flow equations, updating advective flux after solution of the groundwater-flow equation, and updating hydraulic conductivity after solution of the heat-flow equation. Dierect solution is used for each equation. Travel time is determined by particle tracking through the modeled space. Velocities within blocks are linear interpolations of velocities at block faces. Applying this model to the groundwater-flow system located in Jigyung-ri. Songla-myun, Youngil-gun. Kyungsangbuk-do, the groundwater-flow system including distribution of head, temperature and travel time and flow line, is analyzed.

  • PDF

Evaluation on the nutrient concentration changes along the flow path of a free surface flow constructed wetland in agricultural area (농업지역에 조성된 자유수면형 인공습지의 유로에 따른 영양염류의 변화 평가)

  • Mercado, Jean Margaret R.;Maniquiz-Redillas, Marla C.;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.15 no.2
    • /
    • pp.215-222
    • /
    • 2013
  • In this study, the nutrient concentration changes along the hydrologic flow path of a free water surface flow constructed wetland (CW) treating agricultural stream runoff was investigated. Dry sampling was performed from April 2009 to November 2011 at five locations representing each treatment units of the CW. Grab water samples were analyzed for nitrogen forms such as total nitrogen (TN), total Kjeldahl nitrogen, nitrate, and ammonium; and phosphorus forms including total phosphorus (TP) and phosphate. Findings revealed that the physical properties such as temperature, dissolved oxygen and pH affected the TP retention in the CW. High nutrient reduction was observed after passing the first sedimentation zone indicating the importance of settling process in the retention of nutrients. However, it was until the 85% of the length of the CW where nutrient retention was greatest indicating the deposition of nutrients at the alternating shallow and deep marshes. TN and TP concentration seemed to increase at the final sedimentation zone (FSZ) suggesting a possible nutrient source in this segment of the CW. It was therefore recommended to reduce or possibly remove the FSZ in the CW for an optimum performance, smaller spatial allocation and lesser construction expenses for similar systems.

Routing of Groundwater Component in Open Channel (Saint-Venant 공식(公式)에 의한 개수로(開水路)의 지하수성분(地下水性分) 추적(追跡))

  • Kim, Jae Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.4
    • /
    • pp.23-32
    • /
    • 1988
  • The rates of infiltration contributed to the flow fo water in an unconfined aquifer under the partially penetrated stream at an ungaged station and the corresponding base flow in channel are coupled by using the hydraulic and/or hydrologic characteristics obtained from the geomorphologic and soil maps. For the determination of groundwater flow, the linearized model which is originally Boussinesq's nonlinear equation is applied in this study. Also, a stream flow routing model for base flow in channel is based on a simplification of the Saint-venant. The distributed runoff model with piecewise spatial uniformity is presented for obtaining its solution based on a finite difference technique of the kinematic wave equations. The method developed in this study was tested to the Bocheong watershed(area : $475.5km^2$) of the natural stream basin which is one of tributaries in Geum River basin in Korea. As a result, it is suggested that the rationality of hydro-graph separation according to a wide variability in hydrogeologic properties be worked out as developing the physically based subsurface model. The results of the present model are shown to be possible to simulate a base flow due to an arbitrary rate of infiltration for ungaged basins.

  • PDF

Risk Assessment of Levee Embankment Applying Reliability Index (신뢰도 지수를 적용한 하천제방의 위험도 평가)

  • Ahn, Ki-Hong;Han, Kun-Yeun;Kim, Byung-Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.7
    • /
    • pp.547-558
    • /
    • 2009
  • General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.