Browse > Article
http://dx.doi.org/10.3741/JKWRA.2009.42.7.547

Risk Assessment of Levee Embankment Applying Reliability Index  

Ahn, Ki-Hong (Dam & Watershed Dept., K-Water)
Han, Kun-Yeun (School of Archi. & Civil Engineering, Kyungpook National Univ.)
Kim, Byung-Hyun (School of Archi. & Civil Engineering, Kyungpook National Univ.)
Publication Information
Journal of Korea Water Resources Association / v.42, no.7, 2009 , pp. 547-558 More about this Journal
Abstract
General reliability assessment of levees embankment is performed with safety factors for rainfall characteristics and hydrologic and hydraulic parameters, based on the results of deterministic analysis. The safety factors are widely employed in the field of engineering handling model parameters and the diversity of material properties, but cannot explain every natural phenomenon. Uncertainty of flood analysis and related parameters by introducing stochastic method rather than deterministic scheme will be required to deal with extreme weather and unprecedented flood due to recent climate change. As a consequence, stochastic-method-based measures considering parameter uncertainty and related factors are being established. In this study, a variety of dimensionless cumulative rainfall curve for typhoon and monsoon season of July to September with generation method of stochastic temporal variation is generated by introducing Monte Carlo method and applied to the risk assessment of levee embankment using reliability index. The result of this study reflecting temporal and regional characteristics of a rainfall can be used for the establishment of flood defence measures, hydraulic structure design and analysis on a watershed.
Keywords
risk assessment; rainfall variation; Monte Carlo method; levee embankment; reliability index;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kanning, W., Baars, S.V., and Vrijling, J.K. (2008). 'The Stability of Flood Defenses on Permeable soils: The London Avenue Canal Failures in New Orleans.' 6th Int. Conference on Case Histories in Geotechnical Engineering, No. 2.72, pp. 1-9
2 Mays, L.W. and Tung, Y.K. (1992). Hydrosystems engineering and management, McGraw-Hill Book Co., Inc., New York, N.Y
3 Merkel, U. and Westrich, B. (2008). 'PC-River-Probabilistic Reliability Analysis for River Dikes.' 4th Int. Symp. on Flood Defence, pp. 110-116
4 National Research Council. (2000). Risk Analysis and Uncertainty in Flood Damage Reduction studies, National Academy of Science, pp. 1-202
5 Rabinovich, S.G. (2000). Measurement Errors and Uncertainties-Theory and Practice, 2nd edition, Springer-Verlag, New York, NY
6 Ramos, M.C. (2001). 'Divisive and hierarchical clustering techniques to analyse variability of rainfall distribution patterns in a Mediterranean region.' Atoms. Res., Vol. 57, pp. 123-138   DOI   ScienceOn
7 Tung, Y.K. and Yen, B.C. (2005). Hydrosystem engineering uncertainty analysis, McGraw-Hill Book Company, NY, USA
8 Vrijling, J.K. (2000). Probabilistic Design-Lecture Note, IHE Delft
9 Wu, S.J. and Tung, Y.K. (2006). 'Stochastic generation of hourly rainstorm events.' J. Stoch. Environ. Res. Risk. Asssess., Vol. 21, pp. 195-212   DOI
10 Apel, H., Thieken, A.H., Merz, B., and Bloschl, G. (2006). 'A probabilistic Modelling System for Assessing Flood Risks.' Natural Hazard, No. 38, pp. 79-100   DOI
11 Kuo, J.T., Yen, B.C., Hsu, Y.C., and Lin, H.F. (2007). 'Risk analysis for dam overtopping-Feitsui Reservoir as a case study.' J. Hydraul. Engrg., ASCE, Vol. 133, No. 8, pp. 955-963   DOI   ScienceOn
12 건설교통부 부산지방국토관리청 (1997). 감천 하천정비기본계획(보완)
13 Park, S.K. and Miller, K.W. (1988). 'Random Number Generators : Good Ones Are Hard to Find.': CACM, No. 10, Vol. 31, pp. 1192-1201   DOI   ScienceOn
14 건설교통부 (1993). 낙동강 하천정비기본계획(보완 III)
15 건설교통부 (1998, 1999). 한국수문조사연보
16 건설교통부 (2000). 한국 확률강우량도 작성
17 건설교통부 (2001). 유역종합치수계획수립 지침작성
18 건설교통부 (2002). 하천시설물 설계시 신뢰도 분석개념 도입에 관한 연구
19 건설교통부 낙동강홍수통제소 (1999a). 낙동강수계유량
20 경상북도 (2003). 감천 (지방2급) 하천정비기본계획
21 Ang, A.H.S. (1973). 'Structural Risk Analysis and Reliability-Based Design.' J. the Struc. Div., ASCE, Vol. 99, No. STP, pp. 1891-1910
22 윤광석 (2007). 월류에 대한 하천제방 안전성 평가 기법 연구, 한국수자원학회, 물과 미래, Vol. 40, No. 9, pp. 13-17
23 Ang, A.H.S. and Tang, W.H. (1975). Probability Concepts in Engineering Planning and Design, Vol.I II, John Wiley & Sons, Inc
24 Lee, H.L. and Mays, L.W. (1986). 'Hydraulic uncertainties in flood levee capacity.' J. Hydraul. Eng., ASCE, Vol. 112, No. 10, pp. 928-934   DOI   ScienceOn
25 소방방재청 (2007). 2007년도 주요통계 및 자료, pp. 316-317
26 Gui, S., Zhang, R., and Wu, J. (1998). 'Simplified Dynamic Reliability Models for Hydraulic Design.' J. Hydraul. Eng., ASCE, Vol. 124, No. 3, pp. 329-333   DOI   ScienceOn
27 윤광석, 김규호 (2006). 하천제방 안정성(수공학적 측면), 물과 미래, 한국수자원학회, Vol. 39, No. 5, pp. 14-19
28 한국수자원학회 (2002). 2002년 홍수피해 종합조사보고서
29 Fread, D.L. (1998). NWS FLDWAV, NWS Reports, National Weather Service(NWS), Maryland, USA
30 Hartford, D.N.D. and Beacher, G.B. (2004). Risk and Uncertainty in Dam Safety, Thomas Telford
31 Hill, I.D., Hill, R., and Holder, R.L. (1976). 'Algorithm AS 99. Fitting Johnson curves by moments.' Appl. Stat., Vol. 25, pp. 180-189   DOI   ScienceOn
32 Hromadka, T.V., McCuen, R.H., and Yen, C.C. (1987). Computational Hydrology in Flood Control Design and Planning, Lighthouse Publications
33 IMPACT (2004). Investigation of Extreme Flood Process & Uncertainty-Identifying Potential Breach Location, WP2: Deliverable D 2.4.1
34 Johnson, P.A. (1996). 'Uncertainty of Hydraulic Parameters.' J. Hydraul. Eng., ASCE, Vol. 122, No. 2, pp. 112-114   DOI
35 소방방재청 (2006). FARD2006 매뉴얼
36 건설교통부 (1999). 수자원관리기법개발연구조사보고서
37 건설교통부 (2007). 홍수량 산정기법 가이드라인(보완)
38 건설교통부 낙동강홍수통제소 (1999b). 낙동강수계 유량측정조사 보고서
39 Aitchison, J. (1986). Statistical analysis of compositional data, Champman & Hall Inc., NY, USA