• Title/Summary/Keyword: Hydrogen technology

Search Result 3,493, Processing Time 0.033 seconds

Detection of Hydrogen Peroxide in vitro and in vivo Using Peroxalate Chemiluminescent Micelles

  • Lee, Il-Jae;Hwang, On;Yoo, Dong-Hyuck;Khang, Gil-Son;Lee, Dong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2187-2192
    • /
    • 2011
  • Hydrogen peroxide plays a key role as a second messenger in the normal cellular signaling but its overproduction has been implicated in various life-threatening diseases. Peroxalate chemiluminescence is the light emission from a three component reaction between peroxalate, hydrogen peroxide and fluorophores. It has proven great potential as a methodology to detect hydrogen peroxide in physiological environments because of its excellent sensitivity and specificity to hydrogen peroxide. We developed chemiluminescent micelles composed of amphiphilic polymers, peroxalate and fluorescent dyes to detect hydrogen peroxide at physiological concentrations. In this work, we studied the relationship between the chemiluminescence reactivity and stability of peroxalate by varying the substitutes on the aryl rings of peroxalate. Alkyl substitutes on the aryl ring of peroxalate increased the stability against water hydrolysis, but diminished the reactivity to hydrogen peroxide. Chemiluminescent micelles encapsulating diphenyl peroxalate showed significantly higher chemiluminescence intensity than the counterpart encapsulating dimethylphenyl or dipropylphenyl peroxalate. Diphenyl peroxalate-encapsulated micelles could detect hydrogen peroxide generated from macrophage cells stimulated by lipopolysaccharide (LPS) and image hydrogen peroxide generated during LPS-induced inflammatory responses in a mouse.

Design and Operation of a Small-Scale Hydrogen Liquefier (소형 수소액화기 설계 및 운전에 관한 연구)

  • Baik, Jong Hoon;Karng, Sarng Woo;Kang, Hyungmook;Garceau, Nathaniel;Kim, Seo Young;Oh, In-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.2
    • /
    • pp.105-113
    • /
    • 2015
  • In order to accelerate hydrogen society in current big renewable energy trend, it is very important that hydrogen can be transported and stored as a fuel in efficient and economical fashion. In this perspective, liquid hydrogen can be considered as one of the most prospective storage methods that can bring early arrival of the hydrogen society by its high gravimetric energy density. In this study, a small-scale hydrogen liquefier has been designed and developed to demonstrate direct hydrogen liquefaction technology. Gifford-McMahon (GM) cryocooler was employed to cool warm hydrogen gas to normal boiling point of hydrogen at 20K. Various cryogenic insulation technologies such as double walled vacuum vessels and multi-layer insulation were used to minimize heat leak from ambient. A liquid nitrogen assisted precooler, two ortho-para hydrogen catalytic converters, and highly efficient heat pipe were adapted to achieve the target liquefaction rate of 1L/hr. The liquefier has successfully demonstrated more than 1L/hr of hydrogen liquefaction. The system also has demonstrated its versatile usage as a very efficient 150L liquid hydrogen storage tank.

Technology Characteristics of Hydrogen Production and Its Technology Trend by the Patent Analysis (수소제조 기술특성 및 특허분석에 의한 기술동향)

  • Choi, Jae-Ho;Rhee, Young-Woo;Kang, Kyung-Seok;Choi, Sang-Jin;Kim, Jong-Wook
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.481-494
    • /
    • 2007
  • Hydrogen is clean and renewable and is recognized as a very promising energy to solve both depletion of petroleum resource and environmental problems caused by use of fossil fuels. Extensive researches have been performed worldwide on the production technologies of hydrogen. In this paper, characteristics of hydrogen production technologies were analyzed from the literature survey. Also, The technology trend of hydrogen production was scrutinized based on patent analysis. In patent analysis the search range was limited to the open patents issued from 1996 to 2005. Patents were gathered by using the key-words searching method and filtered by desirable filtering criteria. The technology trend of hydrogen production was discussed by classifying each patent based on the publishing year, country, and company, and the type of production technology.

A Review of Electrochemical Hydrogen Compressor Technology (전기화학적 수소 압축기 기술)

  • KIM, SANG-KYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.6
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Thermodynamic Analysis of a Hydrogen Liquefaction Process for a Hydrogen Liquefaction Pilot Plant with a Small Capacity (소용량 수소액화 파일럿 플랜트 구축을 위한 공정의 열역학 해석)

  • KIM, TAEHOON;CHOI, BYUNG-IL;HAN, YONG-SHIK;DO, KYU HYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.41-48
    • /
    • 2020
  • The present study discussed the thermodynamic analysis of the hydrogen liquefaction process to build a hydrogen liquefaction pilot plant with a small capacity (0.5 ton/day). A 2-stage Brayton cycle utilizing LNG/LN2 cold energy was suggested to be built in Korea for the hydrogen liquefaction pilot plant with a small capacity. Thermodynamic analysis on the effect of various variables on the efficiency of hydrogen liquefaction process was performed. As a result, the CASE in which the ortho-para conversion catalyst was infiltrated inside the heat exchanger showed the best process efficiency. Finally, thermodynamic analysis was performed on the effect of turbo expander compression ratio on the hydrogen liquefaction process and it was confirmed that an optimal turbo expander compression ratio exists.

Flexible Hydrogen Sensor Using Ni-Zr Alloy Thin Film

  • Yun, Deok-Whan;Park, Sung Bum;Park, Yong-il
    • Korean Journal of Materials Research
    • /
    • v.29 no.5
    • /
    • pp.297-303
    • /
    • 2019
  • A triple-layered $PMMA/Ni_{64}Zr_{36}/PDMS$ hydrogen gas sensor using hydrogen permeable alloy and flexible polymer layers is fabricated through spin coating and DC-magnetron sputtering. PDMS(polydimethylsiloxane) is used as a flexible substrate and PMMA(polymethylmethacrylate) thin film is deposited onto the $Ni_{64}Zr_{36}$ alloy layer to give a high hydrogen-selectivity to the sensor. The measured hydrogen sensing ability and response time of the fabricated sensor at high hydrogen concentration of 99.9 % show a 20 % change in electrical resistance, which is superior to conventional Pd-based hydrogen sensors, which are difficult to use in high hydrogen concentration environments. At a hydrogen concentration of 5 %, the resistance of electricity is about 1.4 %, which is an electrical resistance similar to that of the $Pd_{77}Ag_{23}$ sensor. Despite using low cost $Ni_{64}Zr_{36}$ alloy as the main sensing element, performance similar to that of existing Pd sensors is obtained in a highly concentrated hydrogen atmosphere. By improving the sensitivity of the hydrogen detection through optimization including of the thickness of each layer and the composition of Ni-Zr alloy thin film, the proposed Ni-Zr-based hydrogen sensor can replace Pd-based hydrogen sensors.

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study

  • Chen, Cong;Li, Wei Zhong;Song, Yong Chen;Weng, Lin Dong;Zhang, Ning
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2238-2246
    • /
    • 2012
  • Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.

A Comparative Analysis of the Germany and Korea's Bilateral Cooperation Strategy to Secure Overseas Clean Hydrogen: Focusing on the Geopolitical Perspective (독일과 한국의 해외 청정수소 확보를 위한 양자협력 전략 비교 분석: 지정학적 관점을 중심으로)

  • JUN, EUNJIN;WOO, AMI;PARK, MIRA;JUNG, HYOUNDUK;SHIN, HYUN WOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.5
    • /
    • pp.470-498
    • /
    • 2022
  • Recently, the world has been considering hydrogen energy as the primary energy transition means to achieve carbon neutrality by 2050. In order to achieve the goal of reducing greenhouse gas emissions, Korea is also promoting a clean hydrogen economy. However, it is necessary to introduce various clean hydrogen from overseas so that the projected demand can not meet the domestically produced. For this study, we conducted the policy comparison approach between countries other than the generally considered technical and economic approaches. The finding proposes the direction of bilateral cooperation for a strategy of securing overseas clean hydrogen from a geopolitical perspective. Germany was a target country for the policy comparison since it has a high proportion of manufacturing, like Korea, and is taking the lead in the renewable-based energy transition policy. According to the survey and analysis of the policy establishment status and new projects of the two countries, Germany is promoting bilateral international cooperation in the hydrogen area with about 33 countries based on 7 types of activities. In comparison, Korea is involved in bilateral cooperation with about 12 countries on relatively few activities. Among the types of bilateral cooperation, R&D cooperation with advanced countries for hydrogen technology was a common activity type. Germany preemptively promotes cooperation for demonstration and commercialization, considering geopolitical means and strengthening manpower training and assistance on policy and regulation to preoccupy the market for the future. Therefore, it is necessary to consider establishing a network of an entire life cycle of supply and demand network that links the future market with securing clean hydrogen considering the geopolitical distribution. To this end, Korea also needs to expand bilateral cooperation countries by activity type, and it seems necessary to seek various geopolitical-based bilateral cooperation and support measures for developing countries to diversify the supply sources of hydrogen.

TWO-DIMENSIONAL SIMULATION OF HYDROGEN IODIDE DECOMPOSITION REACTION USING FLUENT CODE FOR HYDROGEN PRODUCTION USING NUCLEAR TECHNOLOGY

  • CHOI, JUNG-SIK;SHIN, YOUNG-JOON;LEE, KI-YOUNG;CHOI, JAE-HYUK
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.424-433
    • /
    • 2015
  • The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of $H_2O$ was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

Hydrogen Sulfide Sensing Characteristics Depending on Electrolytes of Pt/CNT Liquid Electrochemical Sensors (Pt/CNT 전극 기반 전기화학식 센서의 전해질에 따른 황화수소 감지 특성)

  • Yuntae Ha;JinBeom Kwon;Suji Choi;Soobeen baek;Daewoong Jung
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.194-198
    • /
    • 2023
  • With the recent development of industrial technology, the problem of odor due to leakage of toxic gas discharged from industrial complexes is gradually increasing. Among them, hydrogen sulfide is a colorless representative odorous substance that can cause pain through irritation of the mucous membranes of the eyes and respiratory tract, and is a gas that can cause central nervous system paralysis and suffocation when exposed to high concentrations. Therefore, in order to improve the odor problem, research on a gas sensor capable of quickly and reliably detecting a leak of hydrogen sulfide is being actively conducted. A lot of research has been done on the existing metal oxide-based hydrogen sulfide gas sensor, but it has the disadvantage of requiring low selectivity and high temperature operating conditions. Therefore, in this study, a Pt/CNT-based electrochemical hydrogen sulfide gas sensor capable of detecting at low temperatures with high selectivity for hydrogen sulfide was developed. A working electrode capable of selectively detecting only hydrogen sulfide was fabricated by synthesizing Pt nanoparticles as a catalyst on functionalized CNT and applied to an electrochemical hydrogen sulfide gas sensor. It was confirmed that the manufactured Pt/CNT-based electrochemical hydrogen sulfide gas sensor has a current change of up to 100uA for hydrogen sulfide, and the both response time and recovery time were within 15 seconds.