DOI QR코드

DOI QR Code

A Review of Electrochemical Hydrogen Compressor Technology

전기화학적 수소 압축기 기술

  • KIM, SANG-KYUNG (Hydrogen Research Department, Korea Institute of Energy Research)
  • 김상경 (한국에너지기술연구원 수소연구단)
  • Received : 2020.11.09
  • Accepted : 2020.12.30
  • Published : 2020.12.30

Abstract

There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

Keywords

References

  1. G. Sdanghi, G. Maranzana, A. Celzard, and V. Fierro, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews, Vol. 102, 2019, pp. 150-170, doi: https://doi.org/10.1016/j.rser.2018.11.028.
  2. G. Sdanghi, G. Maranzana, A. Celzard, and V. Fierro, "Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities", Energies, Vol. 13, No. 12, 2020, pp. 3145, doi: https://doi.org/10.3390/en13123145.
  3. J. Zou, N. Han, J. Yan, Q. Feng, Y. Wang, Z. Zhao, J. Fan, L. Zeng, H. Li, and H. Wang, "Electrochemical compression technologies for high-pressure hydrogen: current status, challenges and perspective", Electrochem. Energ. Rev., Vol. 3, 2020, pp. 690-729, doi: https://doi.org/10.1007/s41918-020-00077-0.
  4. M. Rhandi, M. Tregaro, F. Druart, J. Deseure, and M. Chatenet, "Electrochemical hydrogen compression and purification versus competing technologies: part I. Pros and cons", Chinese Journal of Catalysis, Vol. 41, No. 5, 2020, pp. 756-769, doi: https://doi.org/10.1016/S1872-2067(19)63404-2.
  5. M. Tregaro, M. Rhandi, F. Druart, J. Deseure, and M. Chatenet, "Electrochemical hydrogen compression and purification versus competing technologies: part II. Challenges in electrocatalysis", Chinese Journal of Catalysis, Vol. 41, No. 5, 2020, pp. 770-782, doi: https://doi.org/10.1016/S1872-2067(19)63438-8.
  6. J. M. Sedlak, J. F. Austin, and A. B. LaConti, "Hydrogen recovery and purification using the solid polymer electrolyte electrolysis cell", Int. J. Hydrogen Energy, Vol. 6, No. 1, 1981, pp. 45-51, doi: https://doi.org/10.1016/0360-3199(81)90096-3.
  7. B. Rohland, K. Eberle, R. Strobel, J. Scholta, and J. Garche, "Electrochemical hydrogen compressor", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3841-3846, doi: https://doi.org/10.1016/S0013-4686(98)00144-3.
  8. F. Barbir and H. Gorgun , "Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack", J. Appl. Electrochem., Vol. 37, 2007, pp. 359-365, doi: https://doi.org/10.1007/s10800-006-9266-0.
  9. R. Strobel, M. Oszcipok, M. Fasil, B. Rohland, L. Jorissen, and J. Garche, "The compression of hydrogen in an electrochemical cell based on a PE fuel cell design", Journal of Power Sources, Vol. 105, No. 2, 2002, pp. 208-215, doi: https://doi.org/10.1016/S0378-7753(01)00941-7.
  10. U. Schindewolf, "C. H. Hamann, W. Vielstich: Elektrochemie II, Elektrodenprozesse, Angewandte Elektrochemie, Taschentext 42, Verlag Chemie, Physik Verlag, Weinheim 1981. 428 Seiten, Preis: DM 52,-", Buchbesprechung, Vol. 86, No. 8, 1982, doi: https://doi.org/10.1002/bbpc.19820860826.
  11. A. Godula-Jopek, "Hydrogne production by electrolysis", Wiley, USA, 2015, pp. 52-53.
  12. C. Casati, P. Longhi, L. Zanderighi, and F. Bianchi, "Some fundamental aspects in electrochemical hydrogen purification/compression", Journal of Power Sources, Vol. 180, No. 1, 2008, pp. 103-113, doi: https://doi.org/10.1016/j.jpowsour.2008.01.096.
  13. K. Onda, K. Ichihara, M. Nagahama, Y. Minamoto, and T. Araki, "Separation and compression characteristics of hydrogen by use of proton exchange membrane", Journal of Power Sources, Vol. 164, No. 1, 2007, pp. 1-8, doi: https://doi.org/10.1016/j.jpowsour.2006.10.018.
  14. K. Onda, T. Araki, K. Ichihara, and M . Nagahama, "Treatment of low concentration hydrogen by electrochemical pump or proton exchange membrane fuel cell", Journal of Power Sources, Vol. 188, No. 1, 2009, pp. 1-7, doi: https://doi.org/10.1016/j.jpowsour.2008.11.135.
  15. M. T. Nguyen, S. A. Grigoriev, A. A. Kalinnikov, A. A. Filippov, P. Millet, and V. N. Fateev, "Characterisation of a electrochemical hydrogen pump using electrochemical impedance spectroscopy", J. Appl. Electrochem., Vol. 41, 2011, pp. 1033-1042, doi: https://doi.org/10.1007/s10800-011-0341-9.
  16. S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky, and V. N. Fateev, "Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4148-4155, doi: https://doi.org/10.1016/j.ijhydene.2010.07.012.
  17. Y. Hao, H. Nakajima, H. Yoshizumi, A. Inada, K. Sasaki, and K. Ito, "Characterization of an electrochemical hydrogen pump with internal humidifier and dead-end anode channel", Int. J. Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 13879-13887, doi: https://doi.org/10.1016/j.ijhydene.2016.05.160.
  18. S. Toghyani, E. Afshari, and E. Baniasadi, "Parametric study of a proton exchange membrane compressor for electrochemical hydrogen storage using numerical assessment", Journal of Energy Storage, Vol. 30, 2020, pp. 101469, doi: https://doi.org/10.1016/j.est.2020.101469.
  19. G. Sdanghi, J. Dillet, S. Didierjean, V. Fierro, and G. Maranzana, "Feasibility of hydrogen compression in an electrochemical system: focus on water transport mechanisms", Fuel Cells, Vol. 20, No. 3, 2020, pp. 370-380, doi: https://doi.org/10.1002/fuce.201900068.
  20. A. Chouhan, B. Bahar, and A. K. Prasad, "Effect of back-diffusion on the performance of an electrochemical hydrogen compressor", Int. J. Hydrogen Energy, Vol. 45, No. 19, 2020, pp. 10991-10999, doi: https://doi.org/10.1016/j.ijhydene.2020.02.048.
  21. A. Chouhan, U. R. Aryal, B. Bahar, and A. K. Prasad, "Analysis of an electrochemical compressor stack", Int. J. Hydrogen Energy, Vol. 45, No. 56, 2020, pp. 31452-31465, doi: https://doi.org/10.1016/j.ijhydene.2020.08.164.
  22. M. Hamdan, "Electrochemical compression", DOE Hydrogen & Fuel Cells Program Annual Merit Review Meeting Proceeding, 2019. Retrieved from https://www.hydrogen.energy.gov/pdfs/review19/in005_hamdan_2019_o.pdf.
  23. S. J. Kim, B. S. Lee, S. H. Ahn, J. Y. Han, H. Y. Park, S. H. Kim, S. J. Yoo, H. J. Kim, E. Cho, D. Henkensmeier, S. W. Nam, T. H. Lim, S. K. Kim, W. Huh, and J. H. Jang, "Characterizations of polybenzimidazole based electrochemical hydrogen pumps with various Pt loadings for H2/CO2 gas separation", Int. J. Hydrogen Energy, Vol. 38, No. 34, 2013, pp. 14816-14823, doi: https://doi.org/10.1016/j.ijhydene.2013.08.142.
  24. S. J. Kim, H. Y. Park, S. H. Ahn, B. S. Lee, H. J. Kim, E. Cho, D. Henkensmeier, S. W. Nam, S. H. Kim, S. J. Yoo, and J. H. Jang, "Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps", Applied Catalysis B: Environmental, Vol. 158-159, 2014, pp. 348-354, doi: https://doi.org/10.1016/j.apcatb.2014.04.016.
  25. X. Wu, J. Benziger, and G. He, "Comparison of Pt and Pd catalysts for hydrogen pump separation from reformate", Journal of Power Sources, Vol. 218, 2012, pp. 424-434, doi: https://doi.org/10.1016/j.jpowsour.2012.07.002.
  26. A. Rico-Zavala, F. V. Matera, N. Arjona, J. A. Rodriguez-Morales, J. Ledesma-Garcia, M. P. Gurrola, and L. G. Arriaga, "Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor", Int. J. Hydrogen Energy, Vol. 44, No. 10, 2019, pp. 4839-4850, doi: https://doi.org/10.1016/j.ijhydene.2018.12.174.
  27. M. Nordio, M. E. Barain, L. Raymakers, M. V. S. Annaland, M. Mulder, and F. Gallucci, "Effect of CO2 on the performance of an electrochemical hydrogen compressor", Chemical Engineering Journal, Vol. 392, 2020, pp. 123647, doi: https://doi.org/10.1016/j.cej.2019.123647.
  28. M. Nordio, F. Rizzi, G. Manzolini, M. Mulder, L. Raymakers, M. V. S. Annaland, and F. Gallucci, "Experimental and modelling study of an electrochemical hydrogen compressor", Chemical Engineering Journal, Vol. 369, 2019, pp. 432-442, doi: https://doi.org/10.1016/j.cej.2019.03.106.
  29. B. L. Kee, D. Curran, H. Zhu, R. J. Braun, S. C. DeCaluwe, R. J. Kee, and S. Ricote, "Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes", Membranes, Vol. 9, No. 7, 2019, pp. 77, doi: https://doi.org/10.3390/membranes9070077.
  30. S. Huang, T. Wang, X. Wu, W. Xiao, M. Yu, W. Chen, F. Zhang, and G. He, "Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane", Journal of Power Sources, Vol. 327, 2016, pp. 178-186, doi: https://doi.org/10.1016/j.jpowsour.2016.07.025.