Browse > Article
http://dx.doi.org/10.5012/bkcs.2012.33.7.2238

Hydrogen Bonding Analysis of Hydroxyl Groups in Glucose Aqueous Solutions by a Molecular Dynamics Simulation Study  

Chen, Cong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Li, Wei Zhong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Song, Yong Chen (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Weng, Lin Dong (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Zhang, Ning (Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology)
Publication Information
Abstract
Molecular dynamics simulations have been performed to investigate hydrogen bonding characteristics of hydroxyl groups in glucose aqueous solutions with different concentrations. The hydrogen bonding abilities and strength of different O and H atom types have been calculated and compared. The acceptor/donor efficiencies have been predicted and it has been found that: (1) O2-HO2 and O3-HO3 are more efficient intramolecular hydrogen bonding acceptors than donors; (2) O1-HO1, O4-HO4 and O6-HO6 are more efficient intramolecular hydrogen bonding donors than acceptors; (5) O1-HO1 and O6-HO6 are more efficient intermolecular hydrogen bonding acceptors than donors while hydroxyl groups O2-HO2 and O4-HO4 are more efficient intermolecular hydrogen bonding donors than acceptors. The hydrogen bonding abilities of hydroxyl groups revealed that: (1) the hydrogen bonding ability of OH2-$H_w$ is larger than that of hydroxyl groups in glucose; (2) among the hydroxyl groups in glucose, the hydrogen bonding ability of O6-HO6 is the largest and the hydrogen bonding ability of O4-HO4 is the smallest; (3) the intermolecular hydrogen bonding ability of O6-HO6 is the largest; (4) the order for intramolecular hydrogen bonding abilities (from large to small) is O2-HO2, O1-HO1, O3-HO3, O6-HO6 and O4-HO4.
Keywords
Glucose; Hydrogen bond; Molecular dynamics simulation; Hydroxyl group;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Ryckaert, J. P. Mol. Phys. 1985, 55, 549.   DOI
2 Tuckerman, M.; Berne, B. J.; Martyna, G. J. The Journal of Chemical Physics 1992, 97, 1990.   DOI
3 Weng, L. D.; Chen, C.; Zuo, J. G.; Li, W. Z. J. Phys. Chem. A 2011, 115, 4729.   DOI   ScienceOn
4 Henchman, R. H.; Irudayam, S. J. The Journal of Physical Chemistry B 2010, 114, 16792.   DOI
5 Skarmoutsos, L.; Guardia, E.; Samios, J. The Journal of Chemical Physics 2010, 133, 014504.   DOI
6 Elola, M. D.; Ladanyi, B. M. The Journal of Chemical Physics 2006, 125, 184506.   DOI   ScienceOn
7 Lee, H.-S.; Tuckerman, M. E. The Journal of Chemical Physics 2007, 126, 164501.   DOI
8 Guardia, E.; Marti, J.; Padro, J. A.; Saiz, L.; Komolkin, A. V. Journal of Molecular Liquids 2002, 96-97, 3.   DOI   ScienceOn
9 Root, L. J.; Berne, B. J. J. Chem. Phys. 1997, 107, 4350.   DOI
10 Petrenko, V. E.; Antipova, M. L. Structural Chemistry 2011, 22, 471.   DOI
11 Martinez, V. Y.; Nieto, A. B.; Castro, M. A.; Salvatori, D.; Alzamora, S. M. J. Food Eng. 2007, 83, 394.   DOI
12 Lee, S. L.; Debenedetti, P. G.; Errington, J. R. J. Chem. Phys. 2005; p 122 .
13 Paolantoni, M.; Sassi, P.; Morresi, A.; Santini, S. J. Chem. Phys. 2007, 127, 024504.   DOI
14 Te, J. A.; Tan, M. L.; Ichiye, T. Chem. Phys. Lett. 2010, 491, 218.   DOI
15 Chen, C.; Li, W.-Z.; Song, Y.-C.; Weng, L.-D. Acta Physicochimica Sinica 2011, 27, 1372.
16 Suzuki, T. PCCP 2008, 10, 96.   DOI
17 Mason, P. E.; Neilson, G. W.; Enderby, J. E.; Saboungi, M. L.; Brady, J. W. J. Phys. Chem. B 2005, 109, 13104.   DOI
18 Max, J. J.; Chapados, C. J. Phys. Chem. A 2007, 111, 2679.   DOI   ScienceOn
19 Paolantoni, M.; Comez, L.; Fioretto, D.; Gallina, M. E.; Morresi, A.; Sassi, P.; Scarponi, F. Journal of Raman Spectroscopy 2008, 39, 238.   DOI
20 Aroulmoji, V.; Mathlouthi, M.; Feruglio, L.; Murano, E.; Grassi, M. Food Chem. 2011.
21 Venable, R. M.; Hatcher, E.; Guvench, O.; Alexander, J.; MacKerell, D.; Pastor, R. W. J. Phys. Chem. B 2010, 114, 12501.   DOI
22 Chen, C.; Li, W. Z.; Song, Y. C.; Weng, L. D.; Zhang, N. Computational and Theoretical Chemistry 2012, 984, 85.   DOI
23 Phillips, J. C.; Braun, R.; Wang, W.; Gumbar, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kale, L.; Schulten, K. J. Comput. Chem. 2005, 26, 1781.   DOI
24 Guvench, O.; Greene, S. N.; Kamath, G.; Brady, J. W.; Venable, R.M.; Pastor, R. W.; Alexander, J.; MacKerell, D. J. Comput. Chem. 2008, 29, 2543.   DOI
25 Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089.   DOI   ScienceOn
26 Holmstrup, M.; Overgaard, J.; Bindesbol, A. M.; Pertoldi, C.; Bayley, M. Soil Biology & Biochemistry 2007, 39, 2640.   DOI
27 Mazur, P. Am. J. Physiol. 1984, 247, C125.
28 Chen, C.; Li, W. Z.; Song, Y. C.; Yang, J. J. Mol. Liq. 2009, 146, 23.   DOI   ScienceOn
29 Sugimachi, K.; Roach, K. L.; Rhoads, D. B.; Tompkins, R. G.; Toner, M. Tissue Eng. 2006, 12, 579.   DOI
30 Dinsmore, S. C.; Swanson, D. L. Canadian Journal of Zoology- Revue Canadienne De Zoologie 2008, 86, 1095.   DOI