DOI QR코드

DOI QR Code

TWO-DIMENSIONAL SIMULATION OF HYDROGEN IODIDE DECOMPOSITION REACTION USING FLUENT CODE FOR HYDROGEN PRODUCTION USING NUCLEAR TECHNOLOGY

  • CHOI, JUNG-SIK (The Institute of Machinery and Electronic Technology, Mokpo National Maritime University) ;
  • SHIN, YOUNG-JOON (Korea Atomic Energy Research Institute) ;
  • LEE, KI-YOUNG (Korea Atomic Energy Research Institute) ;
  • CHOI, JAE-HYUK (Division of Marine Engineering System, Korea Maritime and Ocean University)
  • Received : 2014.10.05
  • Accepted : 2015.01.24
  • Published : 2015.06.25

Abstract

The operating characteristics of hydrogen iodide (HI) decomposition for hydrogen production were investigated using the commercial computational fluid dynamics code, and various factors, such as hydrogen production, heat of reaction, and temperature distribution, were studied to compare device performance with that expected for device development. Hydrogen production increased with an increase of the surface-to-volume (STV) ratio. With an increase of hydrogen production, the reaction heat increased. The internal pressure and velocity of the HI decomposer were estimated through pressure drop and reducing velocity from the preheating zone. The mass of $H_2O$ was independent of the STV ratio, whereas that of HI decreased with increasing STV ratio.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J.-M. Kim, J.-E. Park, Y.-H. Kim, K.-S. Kang, C.-H. Kim, C.- S. Park, K.-K. Bae, Decomposition of hydrogen iodide on Pt/Cbased catalysts for hydrogen production, Int. J. Hydrogen Energy 33 (2008) 4974-4980. https://doi.org/10.1016/j.ijhydene.2008.05.092
  2. J.E. Funk, R.M. Reinstrom, Energy requirements in production of hydrogen from water, Ind. Eng. Chem. Process. Des. Dev. 5 (1966) 336-342. https://doi.org/10.1021/i260019a025
  3. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, S. Sau, Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle, Int. J. Hydrogen Energy 32 (2007) 531-536. https://doi.org/10.1016/j.ijhydene.2006.08.015
  4. D.M. Ginosar, L.M. Petkovic, A.W. Glenn, K.C. Burch, Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles, Int. J. Hydrogen Energy 32 (2007) 482-488.
  5. D. O'Keefe, C. Allen, G. Besenbruch, L. Brown, J. Norman, R. Sharp, K. McCorkle, Preliminary results from bench-scale testing of a sulfur-iodine thermochemical water-splitting cycle, Int. J. Hydrogen Energy 7 (1982) 381-392. https://doi.org/10.1016/0360-3199(82)90048-9
  6. Z. Wang, L. Wang, S. Chen, P. Zhang, J. Xu, J. Chen, Decomposition of hydrogen iodide over Pt-Ir/C bimetallic catalyst, Int. J. Hydrogen Energy 35 (2010) 8862-8867. https://doi.org/10.1016/j.ijhydene.2010.05.125
  7. D.R. O'Keefe, J.H. Norman, D.G. Williamson, Catalysis research in thermochemical water-splitting processes, Catal. Rev. 22 (1980) 325-369. https://doi.org/10.1080/03602458008067537
  8. I. Ilda, The kinetic behaviour of the decomposition of hydrogen iodide on the surface of platinum,, Z. Phys. Chem. 109 (1978) 221-232. https://doi.org/10.1524/zpch.1978.109.2.221
  9. Y. Shindo, N. Ito, K. Haraya, T. Hakuta, H. Yoshitome, Kinetics of the catalytic decomposition of hydrogen iodide in the thermochemical hydrogen production, Int. J. Hydrogen Energy 9 (1984) 695-700. https://doi.org/10.1016/0360-3199(84)90267-2
  10. Y. Zhang, Z. Wang, J. Zhou, J. Liu, K. Cen, Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle, Int. J. Hydrogen Energy 33 (2008) 602-607. https://doi.org/10.1016/j.ijhydene.2007.10.041
  11. L. Wang, D. Li, P. Zhang, S. Chen, J. Xu, The HI catalytic decomposition for the lab-scale $H_2$ producing apparatus of the iodine-sulfur thermochemical cycle, Int. J. Hydrogen Energy 37 (2012) 6415-6421. https://doi.org/10.1016/j.ijhydene.2012.01.052
  12. L.M. Petkovic, D.M. Ginosar, H.W. Rollins, K.C. Burch, C. Deiana, H.S. Silva, M.F. Sardella, D. Granados, Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle, Int. J. Hydrogen Energy 34 (2009) 4057-4064. https://doi.org/10.1016/j.ijhydene.2008.07.075
  13. Y. Oosawa, T. Kumagai, S. Mizuta, W. Kondo, Y. Takemori, K. Fujii, Kinetics of the catalytic decomposition of hydrogen iodide in the magnesium-iodine thermochemical cycle, Bull. Chem. Soc. Jpn. 54 (1981) 742-748. https://doi.org/10.1246/bcsj.54.742
  14. Y. Zhang, Z. Wang, J. Zhou, J. Liu, K. Cen, Catalytic decomposition of hydrogen iodide over pre-treated Ni/$CeO_2$ catalysts for hydrogen production in the sulfur-iodine cycle, Int. J. Hydrogen Energy 34 (2009) 8792-8798. https://doi.org/10.1016/j.ijhydene.2009.08.058
  15. D. Neumann, Phasengleichgewichte von HJ/$H_2O$/J2-Losungen, PhD Thesis, Lehrstuhl fur Thermodynamik, RWTH Aachen University, Aachen, Germany, 1987 [In German].
  16. H. Engels, K.F. Knoche, Vapor pressures of the system HI/ $H_2O$/$I_2$ and $H_2$, Int. J. Hydrogen Energy 11 (1986) 703-707.
  17. K.F. Knoche, H. Engels, J. Thonnissen, Direct dissociation of hydrogen iodide into hydrogen and iodine from HI/$H_2O$/$I_z$-solution, in: Proc. 5th World Hydrogen Energy Conf., 1984.
  18. C. Berndhauser, K.F. Knoche, Experimental investigations of thermal HI decomposition from $H_2O$-HI-$I_2$ solutions, Int. J. Hydrogen Energy 19 (1994) 239-244. https://doi.org/10.1016/0360-3199(94)90092-2
  19. M. Lanchi, A. Ceroli, R. Liberatore, L. Marrelli, M. Maschietti, A. Spadoni, P. Tarquini, S-I thermochemical cycle: a thermodynamic analysis of the HI-$H_2O$-$I_2$ system and design of the $HI_x$ decomposition section, Int. J. Hydrogen Energy 34 (2009) 2121-2132. https://doi.org/10.1016/j.ijhydene.2008.11.029
  20. J.E. Murphy, J.P. O'Connell, A properties model of the HI-$I_2$-$H_2O$-$H_2$ system in the sulfureiodine cycle for hydrogen manufacture, Fluid Phase Equilib. 288 (2010) 99-110. https://doi.org/10.1016/j.fluid.2009.10.025
  21. M.K. Hadj-Kali, V. Gerbaud, J.-M. Borgard, O. Baudouin, P. Floquet, X. Joulia, P. Carles, $HI_x$ system thermodynamic model for hydrogen production by the sulfur-iodine cycle, Int. J. Hydrogen Energy 34 (2009) 1696-1709. https://doi.org/10.1016/j.ijhydene.2008.12.035
  22. J. Hur, J.P. O'Connell, K.-K. Bae, K.-S. Kang, J.W. Kang, Measurements and correlation of solideliquid equilibria of the HI + $I_2$ + $H_2O$ system, Int. J. Hydrogen Energy 36 (2011) 8187-8191. https://doi.org/10.1016/j.ijhydene.2011.04.125
  23. H. Guo, P. Zhang, S. Chen, L. Wang, J. Xu, Review of thermodynamic properties of the components in HI decomposition section of the iodine-sulfur process, Int. J. Hydrogen Energy 36 (2011) 9505-9513. https://doi.org/10.1016/j.ijhydene.2011.05.071
  24. C. Kane, S.T. Revankar, Sulfur-iodine thermochemical cycle: HI decomposition flow sheet analysis, Int. J. Hydrogen Energy 33 (2008) 5996-6005. https://doi.org/10.1016/j.ijhydene.2008.05.044
  25. L.C. Brown, G.E. Besenbruch, R.D. Lentsch, K.R. Schultz, J.F. Funk, P.S. Pickard, A.C. Marshall, S.K. Showalter, High Efficiency Generation of Hydrogen Fuels Using Nuclear Power, Final Technical Report No. GA-A24285 Rev.1, General Atomics, San Diego, CA, 2003.
  26. M. Roth, K.F. Knoche, Thermochemical water splitting through direct HI-decomposition from $H_2O$/HI/$I_2$/$H_2$ solutions, Int. J. Hydrogen Energy 14 (1989) 545-549.
  27. P. Wang, A. Anderko, R.D. Young, A speciation-based model for mixed-solvent electrolyte systems,, Fluid Phase Equilib. 203 (2002) 141-176. https://doi.org/10.1016/S0378-3812(02)00178-4
  28. L. Wang, Y. Imai, N. Tanaka, S. Kasahara, S. Kubo, K. Onuki, S. Chen, P. Zhang, J. Xu, Simulation study about the effect of pressure on purification of $H_2SO_4$ and $HI_x$ phases in the iodineesulfur hydrogen production cycle, Int. J. Hydrogen Energy 37 (2012) 12967-12972. https://doi.org/10.1016/j.ijhydene.2012.05.070
  29. L. Wang, Y. Imai, N. Tanaka, S. Kasahara, S. Kubo, K. Onuki, Thermodynamic considerations on the purification of $H_2SO_4$ and $HI_x$ phases in the iodine-sulfur hydrogen production process, Chem. Eng. Commun. 199 (2012) 165-177. https://doi.org/10.1080/00986445.2011.582530
  30. C.E. Bamberger, D.M. Richardson, Hydrogen production from water by thermochemical cycles, Cryogenics 16 (1976) 197-208. https://doi.org/10.1016/0011-2275(76)90260-5
  31. J.E. Funk, Thermochemical hydrogen production: past and present, Int. J. Hydrogen Energy 26 (2001) 185-190. https://doi.org/10.1016/S0360-3199(00)00062-8
  32. G. de Beni, C. Marchetti, Hydrogen, key to the energy market, Eurospectra 9 (1970) 46-50.
  33. S. Kubo, H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, K. Onuki, A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Design 233 (2004) 347-354. https://doi.org/10.1016/j.nucengdes.2004.08.025
  34. S. Kubo, S. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki, R. Hino, A pilot test plan of the thermochemical water-splitting iodine-sulfur process, Nucl. Eng. Design 233 (2004) 355-362. https://doi.org/10.1016/j.nucengdes.2004.08.018
  35. S. Kubo, H. Nakajima, S. Higashi, T. Masaki, S. Kasahara, M. Nomuara, R&D Program on Thermochemical Water-splitting Iodine-sulfur Process at JAERI, Rep. No. GENES4/ANP2003, JAERI, Kyoto, Japan, 1-7.
  36. H. Nakajima, M. Sakurai, K. Ikenoya, G.J. Hwang, K. Onuki, S. Shimizu, in: A Study on a Closed-cycle Hydrogen Production by Thermochemical Water-splitting IS Process, ICONE-7, Tokyo, Japan, 1999. ICONE-7104.
  37. A. Roine, HSC Chemistry$^{(R)}$ for Windows, Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database, Version 5.1, Outokumpu Research Oy, Pori, Finland, 2002, ISBN 952-9507-08-9.
  38. L.C. Brown, R.D. Lentsch, G.E. Besenbruch, K.R. Schultz, J.E. Funk, Alternative Flow Sheets for the Sulfur-iodine Thermochemical Hydrogen Cycle, Rep. No. GA-A24266, General Atomics, San Diego, CA, 2003.

Cited by

  1. Economic assessment of selected hydrogen production methods: A review vol.12, pp.11, 2015, https://doi.org/10.1080/15567249.2017.1350770
  2. Simulating reactive distillation of HIx (HI-H2O-I2) system in Sulphur-Iodine cycle for hydrogen production vol.52, pp.2, 2015, https://doi.org/10.1016/j.net.2019.07.033