Browse > Article
http://dx.doi.org/10.7316/KHNES.2020.31.6.578

A Review of Electrochemical Hydrogen Compressor Technology  

KIM, SANG-KYUNG (Hydrogen Research Department, Korea Institute of Energy Research)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.31, no.6, 2020 , pp. 578-586 More about this Journal
Abstract
There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.
Keywords
Electrochemical hydrogen compressor; Hydrogen pump; Electrochemical hydrogen separation; Proton exchange membrane; Water management;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Tregaro, M. Rhandi, F. Druart, J. Deseure, and M. Chatenet, "Electrochemical hydrogen compression and purification versus competing technologies: part II. Challenges in electrocatalysis", Chinese Journal of Catalysis, Vol. 41, No. 5, 2020, pp. 770-782, doi: https://doi.org/10.1016/S1872-2067(19)63438-8.   DOI
2 J. M. Sedlak, J. F. Austin, and A. B. LaConti, "Hydrogen recovery and purification using the solid polymer electrolyte electrolysis cell", Int. J. Hydrogen Energy, Vol. 6, No. 1, 1981, pp. 45-51, doi: https://doi.org/10.1016/0360-3199(81)90096-3.   DOI
3 B. Rohland, K. Eberle, R. Strobel, J. Scholta, and J. Garche, "Electrochemical hydrogen compressor", Electrochimica Acta, Vol. 43, No. 24, 1998, pp. 3841-3846, doi: https://doi.org/10.1016/S0013-4686(98)00144-3.   DOI
4 F. Barbir and H. Gorgun , "Electrochemical hydrogen pump for recirculation of hydrogen in a fuel cell stack", J. Appl. Electrochem., Vol. 37, 2007, pp. 359-365, doi: https://doi.org/10.1007/s10800-006-9266-0.   DOI
5 R. Strobel, M. Oszcipok, M. Fasil, B. Rohland, L. Jorissen, and J. Garche, "The compression of hydrogen in an electrochemical cell based on a PE fuel cell design", Journal of Power Sources, Vol. 105, No. 2, 2002, pp. 208-215, doi: https://doi.org/10.1016/S0378-7753(01)00941-7.   DOI
6 U. Schindewolf, "C. H. Hamann, W. Vielstich: Elektrochemie II, Elektrodenprozesse, Angewandte Elektrochemie, Taschentext 42, Verlag Chemie, Physik Verlag, Weinheim 1981. 428 Seiten, Preis: DM 52,-", Buchbesprechung, Vol. 86, No. 8, 1982, doi: https://doi.org/10.1002/bbpc.19820860826.   DOI
7 A. Godula-Jopek, "Hydrogne production by electrolysis", Wiley, USA, 2015, pp. 52-53.
8 C. Casati, P. Longhi, L. Zanderighi, and F. Bianchi, "Some fundamental aspects in electrochemical hydrogen purification/compression", Journal of Power Sources, Vol. 180, No. 1, 2008, pp. 103-113, doi: https://doi.org/10.1016/j.jpowsour.2008.01.096.   DOI
9 K. Onda, T. Araki, K. Ichihara, and M . Nagahama, "Treatment of low concentration hydrogen by electrochemical pump or proton exchange membrane fuel cell", Journal of Power Sources, Vol. 188, No. 1, 2009, pp. 1-7, doi: https://doi.org/10.1016/j.jpowsour.2008.11.135.   DOI
10 K. Onda, K. Ichihara, M. Nagahama, Y. Minamoto, and T. Araki, "Separation and compression characteristics of hydrogen by use of proton exchange membrane", Journal of Power Sources, Vol. 164, No. 1, 2007, pp. 1-8, doi: https://doi.org/10.1016/j.jpowsour.2006.10.018.   DOI
11 M. T. Nguyen, S. A. Grigoriev, A. A. Kalinnikov, A. A. Filippov, P. Millet, and V. N. Fateev, "Characterisation of a electrochemical hydrogen pump using electrochemical impedance spectroscopy", J. Appl. Electrochem., Vol. 41, 2011, pp. 1033-1042, doi: https://doi.org/10.1007/s10800-011-0341-9.   DOI
12 A. Chouhan, U. R. Aryal, B. Bahar, and A. K. Prasad, "Analysis of an electrochemical compressor stack", Int. J. Hydrogen Energy, Vol. 45, No. 56, 2020, pp. 31452-31465, doi: https://doi.org/10.1016/j.ijhydene.2020.08.164.   DOI
13 S. A. Grigoriev, I. G. Shtatniy, P. Millet, V. I. Porembsky, and V. N. Fateev, "Description and characterization of an electrochemical hydrogen compressor/concentrator based on solid polymer electrolyte technology", Int. J. Hydrogen Energy, Vol. 36, No. 6, 2011, pp. 4148-4155, doi: https://doi.org/10.1016/j.ijhydene.2010.07.012.   DOI
14 Y. Hao, H. Nakajima, H. Yoshizumi, A. Inada, K. Sasaki, and K. Ito, "Characterization of an electrochemical hydrogen pump with internal humidifier and dead-end anode channel", Int. J. Hydrogen Energy, Vol. 41, No. 32, 2016, pp. 13879-13887, doi: https://doi.org/10.1016/j.ijhydene.2016.05.160.   DOI
15 S. Toghyani, E. Afshari, and E. Baniasadi, "Parametric study of a proton exchange membrane compressor for electrochemical hydrogen storage using numerical assessment", Journal of Energy Storage, Vol. 30, 2020, pp. 101469, doi: https://doi.org/10.1016/j.est.2020.101469.   DOI
16 G. Sdanghi, J. Dillet, S. Didierjean, V. Fierro, and G. Maranzana, "Feasibility of hydrogen compression in an electrochemical system: focus on water transport mechanisms", Fuel Cells, Vol. 20, No. 3, 2020, pp. 370-380, doi: https://doi.org/10.1002/fuce.201900068.   DOI
17 A. Chouhan, B. Bahar, and A. K. Prasad, "Effect of back-diffusion on the performance of an electrochemical hydrogen compressor", Int. J. Hydrogen Energy, Vol. 45, No. 19, 2020, pp. 10991-10999, doi: https://doi.org/10.1016/j.ijhydene.2020.02.048.   DOI
18 M. Hamdan, "Electrochemical compression", DOE Hydrogen & Fuel Cells Program Annual Merit Review Meeting Proceeding, 2019. Retrieved from https://www.hydrogen.energy.gov/pdfs/review19/in005_hamdan_2019_o.pdf.
19 S. J. Kim, H. Y. Park, S. H. Ahn, B. S. Lee, H. J. Kim, E. Cho, D. Henkensmeier, S. W. Nam, S. H. Kim, S. J. Yoo, and J. H. Jang, "Highly active and CO2 tolerant Ir nanocatalysts for H2/CO2 separation in electrochemical hydrogen pumps", Applied Catalysis B: Environmental, Vol. 158-159, 2014, pp. 348-354, doi: https://doi.org/10.1016/j.apcatb.2014.04.016.   DOI
20 S. J. Kim, B. S. Lee, S. H. Ahn, J. Y. Han, H. Y. Park, S. H. Kim, S. J. Yoo, H. J. Kim, E. Cho, D. Henkensmeier, S. W. Nam, T. H. Lim, S. K. Kim, W. Huh, and J. H. Jang, "Characterizations of polybenzimidazole based electrochemical hydrogen pumps with various Pt loadings for H2/CO2 gas separation", Int. J. Hydrogen Energy, Vol. 38, No. 34, 2013, pp. 14816-14823, doi: https://doi.org/10.1016/j.ijhydene.2013.08.142.   DOI
21 M. Nordio, F. Rizzi, G. Manzolini, M. Mulder, L. Raymakers, M. V. S. Annaland, and F. Gallucci, "Experimental and modelling study of an electrochemical hydrogen compressor", Chemical Engineering Journal, Vol. 369, 2019, pp. 432-442, doi: https://doi.org/10.1016/j.cej.2019.03.106.   DOI
22 X. Wu, J. Benziger, and G. He, "Comparison of Pt and Pd catalysts for hydrogen pump separation from reformate", Journal of Power Sources, Vol. 218, 2012, pp. 424-434, doi: https://doi.org/10.1016/j.jpowsour.2012.07.002.   DOI
23 A. Rico-Zavala, F. V. Matera, N. Arjona, J. A. Rodriguez-Morales, J. Ledesma-Garcia, M. P. Gurrola, and L. G. Arriaga, "Nanocomposite membrane based on SPEEK as a perspectives application in electrochemical hydrogen compressor", Int. J. Hydrogen Energy, Vol. 44, No. 10, 2019, pp. 4839-4850, doi: https://doi.org/10.1016/j.ijhydene.2018.12.174.   DOI
24 M. Nordio, M. E. Barain, L. Raymakers, M. V. S. Annaland, M. Mulder, and F. Gallucci, "Effect of CO2 on the performance of an electrochemical hydrogen compressor", Chemical Engineering Journal, Vol. 392, 2020, pp. 123647, doi: https://doi.org/10.1016/j.cej.2019.123647.   DOI
25 M. Rhandi, M. Tregaro, F. Druart, J. Deseure, and M. Chatenet, "Electrochemical hydrogen compression and purification versus competing technologies: part I. Pros and cons", Chinese Journal of Catalysis, Vol. 41, No. 5, 2020, pp. 756-769, doi: https://doi.org/10.1016/S1872-2067(19)63404-2.   DOI
26 B. L. Kee, D. Curran, H. Zhu, R. J. Braun, S. C. DeCaluwe, R. J. Kee, and S. Ricote, "Thermodynamic insights for electrochemical hydrogen compression with proton-conducting membranes", Membranes, Vol. 9, No. 7, 2019, pp. 77, doi: https://doi.org/10.3390/membranes9070077.   DOI
27 S. Huang, T. Wang, X. Wu, W. Xiao, M. Yu, W. Chen, F. Zhang, and G. He, "Coupling hydrogen separation with butanone hydrogenation in an electrochemical hydrogen pump with sulfonated poly (phthalazinone ether sulfone ketone) membrane", Journal of Power Sources, Vol. 327, 2016, pp. 178-186, doi: https://doi.org/10.1016/j.jpowsour.2016.07.025.   DOI
28 G. Sdanghi, G. Maranzana, A. Celzard, and V. Fierro, "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications", Renewable and Sustainable Energy Reviews, Vol. 102, 2019, pp. 150-170, doi: https://doi.org/10.1016/j.rser.2018.11.028.   DOI
29 G. Sdanghi, G. Maranzana, A. Celzard, and V. Fierro, "Towards non-mechanical hybrid hydrogen compression for decentralized hydrogen facilities", Energies, Vol. 13, No. 12, 2020, pp. 3145, doi: https://doi.org/10.3390/en13123145.   DOI
30 J. Zou, N. Han, J. Yan, Q. Feng, Y. Wang, Z. Zhao, J. Fan, L. Zeng, H. Li, and H. Wang, "Electrochemical compression technologies for high-pressure hydrogen: current status, challenges and perspective", Electrochem. Energ. Rev., Vol. 3, 2020, pp. 690-729, doi: https://doi.org/10.1007/s41918-020-00077-0.   DOI