• 제목/요약/키워드: Hydrogen production chain

검색결과 41건 처리시간 0.025초

수소 정책 동향과 밸류체인별 수소 기술 개발 현황 (Hydrogen Policy Trends and Current Status of Hydrogen Technology Development by Value Chain)

  • 신재은
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.562-574
    • /
    • 2023
  • Carbon neutrality has been suggested to overcome the global climate crisis caused by global climate change. Hydrogen energy is a major way to achieve carbon neutrality, and the developments and policies of hydrogen technology have been proposed to achieve this goal. To commercialize hydrogen energy resources, it is necessary to understand the overall value chain composed of hydrogen production, storage, and utilization and to present the direction of technological developments. In this paper the hydrogen strategies of major countries, including Europe, the United States, Japan, China, and South Korea will be analyzed, and hydrogen technologies by value chain will also be explain. This paper will contribute to understanding the overall hydrogen policy and technology, as both policy and technology are summarized.

Hydrogen production in the light of sustainability: A comparative study on the hydrogen production technologies using the sustainability index assessment method

  • Norouzi, Nima
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1288-1294
    • /
    • 2022
  • Hydrogen as an environmentally friendly energy carrier has received special attention to solving uncertainty about the presence of renewable energy and its dependence on time and weather conditions. This material can be prepared from different sources and in various ways. In previous studies, fossil fuels have been used in hydrogen production, but due to several limitations, especially the limitation of the access to this material in the not-too-distant future and the great problem of greenhouse gas emissions during hydrogen production methods. New methods based on renewable and green energy sources as energy drivers of hydrogen production have been considered. In these methods, water or biomass materials are used as the raw material for hydrogen production. In this article, after a brief review of different hydrogen production methods concerning the required raw material, these methods are examined and ranked from different aspects of economic, social, environmental, and energy and exergy analysis sustainability. In the following, the current position of hydrogen production is discussed. Finally, according to the introduced methods, their advantages, and disadvantages, solar electrolysis as a method of hydrogen production on a small scale and hydrogen production by thermochemical method on a large scale are introduced as the preferred methods.

수소 전주기 경제성 분석 프로그램 개발 (Economic Analysis Program Development for Assessment of Hydrogen Production, Storage/Delivery, and Utilization Technologies)

  • 김수현;유영돈;박혜민
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.607-615
    • /
    • 2022
  • In this study, economic analysis program was developed for economic evaluation of hydrogen production, storage/delivery, and utilization technologies as well as overseas import of hydrogen. Economic analysis program can be used for the estimation of the levelized cost of hydrogen for hydrogen supply chain technologies. This program include five hydrogen production technology on steam methane reforming and water electrolysis, two hydrogen storage technologies (high compressed gas and liquid hydrogen storage), three hydrogen delivery technologies (compressed gas delivery using tube trailer, liquid hydrogen, and pipeline transportation) and six hydrogen utilization technologies on hydrogen refueling station and stationary fuel cell system. In the case of overseas import hydrogen, it was considered to be imported from five countries (Austraila, Chile, India, Morocco, and UAE), and the transportation methods was based on liquid hydrogen, ammonia, and liquid organic hydrogen carrier. Economic analysis program that was developed in this study can be expected to utilize for planning a detailed implementation methods and hydrogen supply strategies for the hydrogen economy road map of government.

수소 압축 개질공정의 정성적 위험성 평가 (Qualitative Risk Assessment of Hydrogen Compression Reforming Process)

  • 신단비;서두현;김태훈;이광원;이동민;김현기;홍성철
    • 한국수소및신에너지학회논문집
    • /
    • 제33권1호
    • /
    • pp.61-66
    • /
    • 2022
  • In order to introduce the hydrogen economy and increase supply, research in the field of hydrogen production is being actively conducted. Among the hydrogen production methods, the method of steam reforming from natural gas and producing it currently accounts for about 50% of the global hydrogen production. In the method of steam reforming process, hydrogen can be produced by adding a reformer to an existing natural gas supply pipe. Because of these advantages, it is evaluated as a realistic production method at present in Korea, where the city gas supply chain is well established. But there is concern in that it is highly likely to be installed in downtown areas and residential spaces. In this study, the risk of the process of steam reforming to produce hydrogen was reviewed.

CHARACTERISTICS OF BIOHYDROGEN PRODUCTION AND MICROBIAL COMMUNITY AS A FUNCTION OF SUBSTRATE CONCENTRATION

  • Youn, Jong-Ho;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • 제10권1호
    • /
    • pp.7-14
    • /
    • 2005
  • The feasibility of hydrogen production with a raw seed sludge through direct acclimation of feedstock was investigated at acidogenic stage, and methane was harvested at followed methanogenic stage in an anaerobic two-stage process. Hydrogen content was higher than 57% at all tested organic loading rates (OLRs) and the yield of hydrogen ranged from 1.5 to 2.4 mol H2/mol hexose consumed and peaked at 6 gVSl-1day-1. Normal butyrate and acetate were main volatile fatty acids (VFAs), whereas the concentration of propionate was insignificant. The hydrogen-producing bacteria, Clostridium thermosaccharolyticum, was detected with strong intensity at all tested organic loading rates (OLRs) by denaturing gradient gel electrophoresis (DGGE) of the polymerase chain reaction (PCR) analysis. From COD balance in the process, the fraction of the feed-COD converted to the hydrogen-COD at acidogenic stage ranged from 7.9% to 9.3% and peaked at 6 gVSl-1day-1, whereas the fraction of feed-COD converted to the methane-COD at methanogenic stage ranged from 66.2% to 72.3% and peaked at 3 gVSl-1day-1.

한국의 호주 청정 수소 수입을 위한 공급망의 경제성 및 환경영향 평가 (Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea)

  • 김아연;최창권;천승현;임한권
    • 한국수소및신에너지학회논문집
    • /
    • 제33권6호
    • /
    • pp.623-635
    • /
    • 2022
  • As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.

국내외 수소저장기술 특허 분석을 통한 기술개발 동향 (Technology Trend of Hydrogen Storage by the Patent Analysis)

  • 김정운;김태욱;류재웅;장기석
    • 한국수소및신에너지학회논문집
    • /
    • 제23권2호
    • /
    • pp.191-197
    • /
    • 2012
  • The hydrogen storage is one of the key technologies to achieve the successful hydrogen economy and a chain to connect hydrogen production to its utilization. In this paper, characteristics and strong candidates of hydrogen storage technologies were analyzed from the objective information of patents. Also, the hydrogen storage technology trends and gaps were assessed using statistical or qualitative analysis. In this study the patents applied in Korea, Japan, US and EU from 10 or 20 years ago to 2011 were analyzed. The result of patent analysis could be used for developing or searching for promising technology of the hydrogen storage.

재생에너지 기반 청정 수소 운송 에너지 시스템 모사 연구 (A Simulation Study of Renewable Power based Green Hydrogen Mobility Energy Supply Chain Systems)

  • 이준헌;류준형
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.34-50
    • /
    • 2022
  • 파리 기후 협약 이후 온실 가스 감축은 전세계적으로 가장 중요한 문제이다. 특히 상당한 온실 가스를 배출하는 교통 운송 부문의 화석 연료 감축이 시급하다. 본 논문에서는 이에 대한 대안으로 재생에너지원에서 생산된 전기 에너지로 수소를 생산하여 수소 자동차에 연료로 공급하는 그린 모빌리티 에너지 시스템의 경제성을 검토하였다. 시스템 설계에 필요한 재생에너지 발전, 수전해 통한 수소 생산, 수소 저장과 충전소 등 여러가지 결정사항들에 대해 9 가지 시나리오를 구성하여 그에 대한 최적 설계 및 운영 비용을 분석하였다. 본 연구에서 얻어진 경험은 현실적 수소 에너지 시스템을 구축하는데 활용될 수 있을 것이다.

메탈로센 화합물인 [(TMDS)$Cp_2$]$ZrCl_2$ 촉매와 [$(n-Bu)_2Cp_2$]$ZrCl_2$ 촉매를 이용한 고품질의 폴리에틸렌 왁스 제조 (Production of Polyethylene Wax via Metallocene Catalysts [(TMDS)$Cp_2$]$ZrCl_2$ and [$(n-Bu)_2Cp_2$]$ZrCl_2$ in the Presence of Hydrogen Gas as a Chain Transfer Reagent)

  • 김지윤;윤석영;양영도;노석균
    • 폴리머
    • /
    • 제32권6호
    • /
    • pp.566-572
    • /
    • 2008
  • 메탈로센 [(TMDS)$Cp_2$]$ZrCl_2$, 촉매 1과 Exxon 촉매인 [$(n-Bu)_2Cp_2$]$ZrCl_2$, 촉매 2를 사용하여 폴리에틸렌 왁스를 제조하였다. 분자량을 조절하기 위하여 수소를 연쇄이동제로 사용하였다. 실험결과 수소의 주입량이 증가할수록 중합활성의 감소 생성된 폴리에틸렌 왁스의 분자량과 분자량 분포의 감소 그리고 폴리에틸렌 왁스의 융점 저하가 관찰되었다. 수소의 주입으로 폴리에틸렌의 분자량은 1500, 융점은 60 $^\circ$C까지 조절이 가능하였다. 수소의 양을 조절함으로써 메탈로센을 통해 분자량분포가 좁고 융점이 낮은 고품질의 폴리에틸렌 왁스의 제조가 가능하였다. 본 연구실에서 개발된 촉매 1은 알려진 가장 우수한 메탈로센인 촉매 2와 폴리에틸렌 왁스 제조에서 경쟁이 가능한 유사한 특성을 보였다.

Degenerate Polymerase Chain Reaction을 통한 [NiFe]-Hydrogenase의 탐색 (Search for [NiFe]-Hydrogenase using Degenerate Polymerase Chain Reaction)

  • 정희정;김영환;차형준
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2005년도 제17회 워크샵 및 추계학술대회
    • /
    • pp.631-633
    • /
    • 2005
  • For biohydrogen production, hydrogenase is a key enzyme. In the present work we performed search of [NiFe]-hydrogenases from hydrogen producing microorganisms using degenerate polymerase chain reaction (PCR) strategy. Degenerate primers were designed from the conserved region of [NiFe]-hydrogenase group I especially on structural genes encoding for catalytic subunit of [NiFe]-hydrogenase from bacteria producing hydrogen. Most of [NiFe]-hydrogenase (group I) are expressed via complex mechanism with aid of auxiliary protein and localized through twin-arginine translocation pathway. [NiFe]-hydrogenase is composed of large and small subunits for catalytic activity. It is known that only small subunit has signal peptide for periplasmic localization and large & small subunitscome together before localization. During this process, large subunit is treated by endopeptidase for maturation. Based on these information we used signal peptide sequence and C-terminal of large subunit by recognized by endopeptidase as templates for degenerate primers. About 2,900 bp of PCR products were successfully amplified using the designed degenerate primers from genomic DNAs of several microorganisms. The amplified PCR products were inserted into T-vector and then sequenced to confirm.

  • PDF