Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.6.623

Economic and Environmental Impact Analyses on Supply Chains for Importing Clean Hydrogen from Australia in the Republic of Korea  

AYEON, KIM (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
CHANGGWON, CHOE (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
SEUNGHYUN, CHEON (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
HANKWON, LIM (School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.6, 2022 , pp. 623-635 More about this Journal
Abstract
As global warming accelerates, clean hydrogen production becomes more important to mitigate it. However, importing hydrogen is necessary for countries that have high energy demands but insufficient resources to produce clean hydrogen. In line with the trend, this study investigated both the economic and environmental viability of an overseas hydrogen supply chain between Australia and the Republic of Korea. Several possible methods of water electrolysis and hydrogen carriers are compared and effect of renewable electricity price on the cost of hydrogen production is evaluated.
Keywords
Overseas $H_2$; $H_2$ carrier; Water electrolysis; Economic analysis; Environmental impact analysis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 J. Harman, P. Hjalmarsson, J. Mermelstein, J. Ryley, H. Sadler, and M. Selby, "1MW-Class Solid Oxide Electrolyser System Prototype for Low-Cost Green Hydrogen", ECS Transactions, Vol. 103, No. 1, 2021, pp. 383392. Retrieved from https://iopscience.iop.org/article/10.1149/10301.0383ecst/pdf.    DOI
2 A. J. Welch, I. A. Digdaya, R. Kent, P. Ghougassian, H. A. Atwater, and C. Xiang, "Comparative Technoeconomic Analysis of Renewable Generation of Methane Using Sunlight, Water, and Carbon Dioxide", ACS Energy Lett., Vol. 6, No. 4, 2021, pp. 15401549, doi: https://doi.org/10.1021/acsenergylett.1c00174.    DOI
3 F. I. Gallardo, A. M. Ferrario, M. Lamagna, E. Bocci, D. A. Garcia, and T. E. Baeza-Jeria, "A techno-economic analysis of solar hydrogen production by electrolysis in the north of Chile and the case of exportation from Atacama Desert to Japan", Int. J. Hydrogen Energy, Vol. 46, No. 26, 2021, pp. 13709-13728, doi: https://doi.org/10.1016/j.ijhydene.2020.07.050.    DOI
4 P. M. Heuser, D. S. Ryberg, T. Grube, M. Robinius, and D. Stolten, "Techno-economic analysis of a potential energy trading link between Patagonia and Japan based on CO2 free hydrogen". Int. J. Hydrogen Energy, Vol. 44, No. 25, 2019, pp. 12733-12747, doi: https://doi.org/10.1016/j.ijhydene.2018.12.156.    DOI
5 M. Reuss, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model", Appl. Energy, Vol. 200, 2017, pp. 290-302, doi: https://doi.org/10.1016/j.apenergy.2017.05.050.    DOI
6 Y. Ishimoto, M. Voldsund, P. Neksa, S. Roussanaly, D. Berstad, and S. O. Gardarsdottir, "Largescale production and transport of hydrogen from Norway to Europe and Japan: Value chain analysis and comparison of liquid hydrogen and ammonia as energy carriers", Int. J. Hydrogen Energy, Vol. 45, No. 58, 2020, pp. 32865-32883, doi: https://doi.org/10.1016/j.ijhydene.2020.09.017.    DOI
7 E. Kennedy, J. M. Botero, and J. Zonneveld, "HyChain 3, hydrogen supply chain-technology assessment 2 TITLE analysis of the current state and outlook of technologies for production hydrogen supply chain-technology assessment",2019. Retrieved from https://ispt.eu/media/SI2006FinalreportHyChain3.pdf. 
8 M. Niermann, S. Drunert, M. Kaltschmitt, and K. Bonhoff, "Liquid organic hydrogen carriers (LOHCs)-techno-economic analysis of LOHCs in a defined process chain", Energy Environ. Sci., Vol. 12, No. 1, 2019, pp. 290-307, doi: https://doi.org/10.1039/c8ee02700e.    DOI
9 M. AlBreiki and Y. Bicer, "Comparative cost assessment of sustainable energy carriers produced from natural gas accounting for boil-off gas and social cost of carbon", Energy Reports, Vol. 6, 2020, pp. 1897-1909, doi: https://doi.org/10.1016/J.EGYR.2020.07.013.    DOI
10 F. Barth, W. Vanhoudt, M. Londo, J. C. Jansen, K. Veum, J. Castro, and M. Altmann, "CertifHy- Developing a European Framework for the generation of guarantees of origin for green hydrogen", WHEC 201621st World Hydrog. Energy Conf., 2016. Retrieved from https://www.hinicio.com/file/2017/01/CertifHy-definition-outcome-and-scope-LCA-analysis.pdf. 
11 S. Kamiya, M. Nishimura, and E. Harada. "Study on introduction of CO2 free energy to Japan with liquid hydrogen", Physics Procedia, Vol. 67, 2015, pp. 11-19, doi: https://doi.org/10.1016/j.phpro.2015.06.004.    DOI
12 M. Niermann, S. Timmerberg, S. Drunert, and M. Kaltschmitt, "Liquid organic hydrogen carriers and alternatives for international transport of renewable hydrogen", Renewable and Sustainable Energy Reviews, Vol. 135, 2021, pp. 110-171, doi: https://doi.org/10.1016/j.rser.2020.110171.    DOI
13 S. Giddey, S. P. S. Badwal, C. Munnings, and M. Dolan, "Ammonia as a renewable energy transportation media", ACS Sustainable Chem. Eng., Vol. 5, No. 11, 2017, pp. 10231-10239, doi: https://doi.org/10.1021/acssuschemeng.7b02219.    DOI
14 A. Babarit, J. C. Gilloteaux, G. Clodic, M. Duchet, A. Simoneau, and M. F. Platzer, "Techno-economic feasibility of fleets of far offshore hydrogen-producing wind energy converters". Int. J. Hydrogen Energy, Vol. 43, No. 15, 2018, pp. 7266-7289, doi: https://doi.org/10.1016/j.ijhydene.2018.02.144.    DOI
15 J. Ahn, H. You, J. Ryu, and D. Chang. "Strategy for selecting an optimal propulsion system of a liquefied hydrogen tanker", Int. J. Hydrogen Energy, Vol. 42, No. 8, 2017, pp. 5366-5380, doi: https://doi.org/10.1016/j.ijhydene.2017.01.037.    DOI
16 A. Ozawa, M. Inoue, N. Kitagawa, R. Muramatsu, Y. Anzai, Y. Genchi, and Y. Kudoh, "Assessing uncertainties of Well-to-tank greenhouse gas emissions from hydrogen sup ply chains", Sustainability, Vol. 9, No. 7, 2017, pp. 1101, doi: https://doi.org/10.3390/su9071101.    DOI
17 Y. H. Huang, J. H. Wu, and H. S. Huang, "Analyzing the driving forces behind CO2 emissions in energy-resource-poor and fossil-fuel-centered economies: case studies from Taiwan, Japan, and South Korea", Energies, Vol. 14, No. 17, 2021, pp. 5351, doi: https://doi.org/10.3390/en14175351.    DOI
18 I. Choi and H. K. Kim, "A study on social issues for hydro gen industry using news big data", Trans Korean Hydrogen New Energy Soc, Vol. 33, No. 2, 2022, pp. 121-129, doi: https://doi.org/10.7316/KHNES.2022.33.2.121.    DOI
19 T. Miyamoto, H. Hasegawa, M. Mikami, N. Kojima, H. Kabashima, and Y. Urata, "Effect of hydrogen addition to intake gas on combustion and exhaust emission characteristics of a diesel engine", Int. J. Hydrogen Energy, Vol. 36, No. 20, 2011, pp. 13138-13149, doi: https://doi.org/10.1016/j.ijhydene.2011.06.144.    DOI
20 J. E. Sharpe, N. Bimbo, V. P. Ting, B. Rechain, E. Joubert, and T. J. Mays, "Modelling the potential of adsorbed hydro gen for use in aviation", Micropor. Mesopor. Mat., Vol. 209, 2015, pp. 135-140, doi: https://doi.org/10.1016/j.micromeso.2014.08.038.    DOI
21 G, Yue and S. Li, "Clean coal technology and sustainable de velopment", Springer, 2016, doi: https://doi.org/10.1007/9789811020230.    DOI
22 M. A. Rosen, "Thermodynamic comparison of hydrogen production processes", Int. J. Hydrogen Energy, Vol. 21, No. 5, 1996, pp. 349-365, doi: https://doi.org/10.1016/03603199(95)000909.    DOI
23 S. A. Grigoriev, V. N. Fateev, D. G. Bessarabov, and P. Millet, "Current status, research trends, and challenges in water electrolysis science and technology", Int. J. Hydrogen Energy, Vol. 45, No. 49, 2020, pp. 26036-26058. doi: https://doi.org/10.1016/j.ijhydene.2020.03.109.    DOI
24 Y. Zhao, H. Xue, X. Jin, B. Xiong, R. Liu, Y. Peng, L. Jiang, and G. Tian, "System level heat integration and efficiency analysis of hydrogen production process based on solid ox ide electrolysis cells", Int. J. Hydrogen Energy, Vol. 46, No. 77, 2021, pp. 38163-38174, doi: https://doi.org/10.1016/j.ijhydene.2021.09.105.    DOI
25 B. Lee, H. Lee, C. Moon, S. Moon, and H. Lim, "Preliminary economic analysis for H2 transportation using liquid organic H2 carrier to enter H2 Economy Society in Korea", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 2, 2019, pp. 119-127, doi: https://doi.org/10.7316/KHNES.2019.30.2.119.    DOI
26 Y. Kwak, J. Kirk, S. Moon, T. Ohm, Y. J. Lee, M. Jang, L. H. Park, C. I. Ahn, H. Jeong, H. Sohn, S. W. Nam, C. W. Yoon, Y. S. Jo, and Y. Kim, "Hydrogen production from homo cyclic liquid organic hydrogen carriers (LOHCs): bench marking studies and energy-economic analyses", Energy Conv. Manag., Vol. 239, 2021, pp. 114-124, doi: https://doi.org/10.1016/j.enconman.2021.114124.    DOI
27 R. Turton, R. C. Bailie, W. B. Whiting, J. A. Shaeiwitz, and D. Bhattacharyya, "Analysis, synthesis, and design of chemical processes", 4th ed. Pearson, USA, 2013. 
28 Hydrogen Council, "Hydrogen insights: a perspective on hydrogen investment, market development and cost com petitiveness", EnergyNow, 2021. Retrieved from https://energynow.com/2021/02/hydrogen-insights-a-perspective-on-hydrogen-investment-market-developent-and-cost-competitiveness/. 
29 R. Bhandari, C. A. Trudewind, and P. Zapp, "Life cycle assessment of hydrogen production via electrolysis-a review", J. Cleaner. Prod., Vol. 85, 2014, pp. 151-163, doi: https://doi.org/10.1016/j.jclepro.2013.07.048.   DOI