Production of Polyethylene Wax via Metallocene Catalysts [(TMDS)$Cp_2$]$ZrCl_2$ and [$(n-Bu)_2Cp_2$]$ZrCl_2$ in the Presence of Hydrogen Gas as a Chain Transfer Reagent

메탈로센 화합물인 [(TMDS)$Cp_2$]$ZrCl_2$ 촉매와 [$(n-Bu)_2Cp_2$]$ZrCl_2$ 촉매를 이용한 고품질의 폴리에틸렌 왁스 제조

  • Kim, Ji-Yoon (School of Display and Chemical Engineering, Yeungnam University) ;
  • Yoon, Seok-Young (School of Display and Chemical Engineering, Yeungnam University) ;
  • Yang, Young-Do (School of Display and Chemical Engineering, Yeungnam University) ;
  • Noh, Seok-Kyun (School of Display and Chemical Engineering, Yeungnam University)
  • 김지윤 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 윤석영 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 양영도 (영남대학교 공과대학 디스플레이화학공학부) ;
  • 노석균 (영남대학교 공과대학 디스플레이화학공학부)
  • Published : 2008.11.30

Abstract

Polyethylene has been prepared via metallocene catalysts [(TMDS)$Cp_2$]$ZrCl_2$, 1, and [$(n-Bu)_2Cp_2$]$ZrCl_2$, 2, in the presence of hydrogen as a chain transfer reagent. Increase of hydrogen flow to the polymerization reactor resulted in the drop of catalytic activity, reduction of molecular weight of polyethylene, getting narrow of molecular weight distribution of polyethylene, and melting point of the polyethylene wax. It should be noticed that it was possible to control molecular weight down to 1500 and melting temperature to 60 $^\circ$C of polyethylene wax using the catalyst 1 that has been developed by authors as well as the catalyst 2 from Exxon.

메탈로센 [(TMDS)$Cp_2$]$ZrCl_2$, 촉매 1과 Exxon 촉매인 [$(n-Bu)_2Cp_2$]$ZrCl_2$, 촉매 2를 사용하여 폴리에틸렌 왁스를 제조하였다. 분자량을 조절하기 위하여 수소를 연쇄이동제로 사용하였다. 실험결과 수소의 주입량이 증가할수록 중합활성의 감소 생성된 폴리에틸렌 왁스의 분자량과 분자량 분포의 감소 그리고 폴리에틸렌 왁스의 융점 저하가 관찰되었다. 수소의 주입으로 폴리에틸렌의 분자량은 1500, 융점은 60 $^\circ$C까지 조절이 가능하였다. 수소의 양을 조절함으로써 메탈로센을 통해 분자량분포가 좁고 융점이 낮은 고품질의 폴리에틸렌 왁스의 제조가 가능하였다. 본 연구실에서 개발된 촉매 1은 알려진 가장 우수한 메탈로센인 촉매 2와 폴리에틸렌 왁스 제조에서 경쟁이 가능한 유사한 특성을 보였다.

Keywords

References

  1. K. H. Choi, J. KIChE, 39, 667 (2001)
  2. W. Y. Lee, J. KIChE, 27, 489 (1989)
  3. K. H. Choi, Kor. Pat. 0000286 (2001)
  4. E. I. Vandenberg, US Patent 3051690, to Hercules Powder Co., C. A. No. 53:13660g (1962)
  5. G. Natta, Cheim. Ind., 41, 519 (1959)
  6. W. Kaminsky and H. Luker, Makromol. Chem., Rapid Commun., 5, 225 (1984)
  7. J. Dutschke, W. Kaminsky, and H. Luker, Polymer Reaction Engineering, K. H. Reichert and W. Geiseler, Eds., Hanser Publishers, Munich, p. 209 (1983)
  8. James C. W. Chien and Bor-ping Wang, J. Polym. Sci. Part A: Polym. Chem., 28, 15 (1990)
  9. S. S. Reddy and S. Sivram, Prog. Polym. Sci., 20, 309 (1995)
  10. J. C. Randall and S. P. Rudker, Macromolecules, 27, 2120 (1994)
  11. M. Michelotti, A. Altomare, F. Ciardelli, and P. Ferrarini, Polymer, 37, 5011 (1996)
  12. M. Chang, U.S. Patent 4914253 (1990)
  13. V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 103, 283 (2003)
  14. S. D. Ittel, L. K. Johnson, and M. Brookhart, Chem. Rev., 100, 1169 (2000)
  15. A. Al-Hymydi, J. C. Garrison, M. Mohammed, W. J. Youngs, and S. Collins, Polyhedron, 24, 1234 (2005)
  16. Tomas Cuenca, Ana Pascal, Pascal Royo, and M. Parra-Hake, Organometallics, 14, 848 (1995)
  17. S. K. Noh, G. G. Byun, C. S. Lee, D. H. Lee, K. B. Yoon, and K. S. Kang, J. Organomet. Chem., 518, 1 (1996)
  18. R. Rieger, G. Jany, R. Fawzi, and Steimann, Organometallics, 13, 647 (1994)
  19. V. Busico, R. Cipullo, and A. Boriello, Makromol. Chem., Rapid Commun., 16, 269 (1995)
  20. S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, S. W. Lee, and W. S. Huh, J. Polym. Sci. Part A: Polym. Chem., 35, 3717 (1997)
  21. R. Schubbe, K. Angermund, G. Fink, and R. Goddard, Macromol. Chem. Phys., 96, 467 (1990)
  22. J. H. Jung, S. K. Noh, H. B. Lee, S. K. Park, D. H. Lee, and K. S. Kang, Polymer(Korea), 23, 189 (1999)
  23. T. SawaguChi, T. Ikemura, and M. Seno, Macromolecules, 28, 7973 (1995)
  24. D. K. Shin, Kor. Pat. 0067267 (2000)
  25. Ratio of formation of Unsaturated end group(%)=(A1/2)X100/(A1/2)+{(A2/3)-(A1/2)/2}. A1=Area of unsaturated bond between 4.6-5.4 ppm, A2=Area of methyl group at 0.9ppm