Browse > Article

Production of Polyethylene Wax via Metallocene Catalysts [(TMDS)$Cp_2$]$ZrCl_2$ and [$(n-Bu)_2Cp_2$]$ZrCl_2$ in the Presence of Hydrogen Gas as a Chain Transfer Reagent  

Kim, Ji-Yoon (School of Display and Chemical Engineering, Yeungnam University)
Yoon, Seok-Young (School of Display and Chemical Engineering, Yeungnam University)
Yang, Young-Do (School of Display and Chemical Engineering, Yeungnam University)
Noh, Seok-Kyun (School of Display and Chemical Engineering, Yeungnam University)
Publication Information
Polymer(Korea) / v.32, no.6, 2008 , pp. 566-572 More about this Journal
Abstract
Polyethylene has been prepared via metallocene catalysts [(TMDS)$Cp_2$]$ZrCl_2$, 1, and [$(n-Bu)_2Cp_2$]$ZrCl_2$, 2, in the presence of hydrogen as a chain transfer reagent. Increase of hydrogen flow to the polymerization reactor resulted in the drop of catalytic activity, reduction of molecular weight of polyethylene, getting narrow of molecular weight distribution of polyethylene, and melting point of the polyethylene wax. It should be noticed that it was possible to control molecular weight down to 1500 and melting temperature to 60 $^\circ$C of polyethylene wax using the catalyst 1 that has been developed by authors as well as the catalyst 2 from Exxon.
Keywords
metallocene; polyethylene wax; hydrogen as a chain transfer reagent; molecular weight control;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 E. I. Vandenberg, US Patent 3051690, to Hercules Powder Co., C. A. No. 53:13660g (1962)
2 V. C. Gibson and S. K. Spitzmesser, Chem. Rev., 103, 283 (2003)
3 S. K. Noh, G. G. Byun, C. S. Lee, D. H. Lee, K. B. Yoon, and K. S. Kang, J. Organomet. Chem., 518, 1 (1996)
4 S. K. Noh, S. Kim, J. Kim, D. H. Lee, K. B. Yoon, H. B. Lee, S. W. Lee, and W. S. Huh, J. Polym. Sci. Part A: Polym. Chem., 35, 3717 (1997)
5 R. Schubbe, K. Angermund, G. Fink, and R. Goddard, Macromol. Chem. Phys., 96, 467 (1990)
6 J. H. Jung, S. K. Noh, H. B. Lee, S. K. Park, D. H. Lee, and K. S. Kang, Polymer(Korea), 23, 189 (1999)
7 J. C. Randall and S. P. Rudker, Macromolecules, 27, 2120 (1994)
8 Ratio of formation of Unsaturated end group(%)=(A1/2)X100/(A1/2)+{(A2/3)-(A1/2)/2}. A1=Area of unsaturated bond between 4.6-5.4 ppm, A2=Area of methyl group at 0.9ppm
9 G. Natta, Cheim. Ind., 41, 519 (1959)
10 R. Rieger, G. Jany, R. Fawzi, and Steimann, Organometallics, 13, 647 (1994)
11 S. D. Ittel, L. K. Johnson, and M. Brookhart, Chem. Rev., 100, 1169 (2000)
12 A. Al-Hymydi, J. C. Garrison, M. Mohammed, W. J. Youngs, and S. Collins, Polyhedron, 24, 1234 (2005)
13 V. Busico, R. Cipullo, and A. Boriello, Makromol. Chem., Rapid Commun., 16, 269 (1995)
14 M. Michelotti, A. Altomare, F. Ciardelli, and P. Ferrarini, Polymer, 37, 5011 (1996)
15 Tomas Cuenca, Ana Pascal, Pascal Royo, and M. Parra-Hake, Organometallics, 14, 848 (1995)
16 K. H. Choi, J. KIChE, 39, 667 (2001)
17 W. Kaminsky and H. Luker, Makromol. Chem., Rapid Commun., 5, 225 (1984)
18 James C. W. Chien and Bor-ping Wang, J. Polym. Sci. Part A: Polym. Chem., 28, 15 (1990)
19 J. Dutschke, W. Kaminsky, and H. Luker, Polymer Reaction Engineering, K. H. Reichert and W. Geiseler, Eds., Hanser Publishers, Munich, p. 209 (1983)
20 W. Y. Lee, J. KIChE, 27, 489 (1989)
21 M. Chang, U.S. Patent 4914253 (1990)
22 K. H. Choi, Kor. Pat. 0000286 (2001)
23 T. SawaguChi, T. Ikemura, and M. Seno, Macromolecules, 28, 7973 (1995)
24 D. K. Shin, Kor. Pat. 0067267 (2000)
25 S. S. Reddy and S. Sivram, Prog. Polym. Sci., 20, 309 (1995)