• Title/Summary/Keyword: Hydrogen fuel-cell vehicle

Search Result 207, Processing Time 0.028 seconds

A Study on the Development of Safety Standard through the Risk Assessment for Fuel Cell System Applied to UAV (무인 비행체용 연료전지 시스템 위험요소 분석을 통한 안전기준 개발 연구)

  • TAEHEON KIM;JAEUK CHOI;INROK CHO;JUNGWOON LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Fuel cell powered unmanned aerial vehicles (UAV) are globally being developed for various application according to hydrogen roadmap. However, safety standards for hydrogen fuel cell for UAV have not been established. Therefore, in this study, we derive safety data based on risk assessment to develop safety standards for fuel cells for UAV. We use fault tree analysis method which is broadly used in hydrogen facilities as a risk assessment tool. We set hydrogen leaks and fires as top events and derived the basic events. Safety data for the basic events were derived by quoting overseas safety standards related to fuel cells. The safety data will be used for developing fuel cell inspection standard according to Act on Hydrogen Economy Promotion and Hydrogen Safety Management.

Development of high-pressure Type 3 composite cylinder for compressed hydrogen storage of fuel cell vehicle (차량용 200bar 급 Type 3 복합재 압력용기의 개발 및 설계인증시험)

  • Chung, Sang-Su;Park, Ji-Sang;Kim, Tae-Wook;Chung, Jae-Han
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.203-206
    • /
    • 2005
  • The objective of study on composite cylinder for alternative fuel vehicle is to develop safe, efficient, and commercially viable, on-board fuel storage system for the fuel cell vehicle or natural gas vehicle that use highly compressed gaseous fuel such as hydrogen or natural gas. This study presents the whole procedure of development and certification of a type 3 composite cylinder of 207bar service pressure and 70 liter water capacity, which includes design/analysis, processing of filament winding, and validation through various testing and evaluation. Design methods of liner configuration and winding patterns are presented. Three dimensional, nonlinear finite element analysis techniques are used to predict burst pressure and failure mode. Design and analysis techniques are verified through burst and cycling tests. The full qualification test methods and results for validation and certification are presented.

  • PDF

Risk Analysis of Jet Flame Occurred at Hydrogen Fuel Cell Vehicle (수소자동차의 제트화염 발생에 따른 위험성 분석)

  • Byoungjik, Park;Yangkyun, Kim;Ohk Kun, Lim
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.158-165
    • /
    • 2022
  • Eco-friendly policies proposed by the government of The Republic of Korea have encouraged the use of eco-friendly vehicles. Hydrogen vehicles have exhibited the highest growth rate, although the current number of registered vehicles is low. In hydrogen vehicles, a thermally activated pressure relief device (TPRD) is installed to prevent explosions in the hydrogen gas cylinder. When discharged due to low ignition energy, hydrogen gas readily forms a jet flame. The risks induced by such jet flames were analyzed through a numerical analysis. Jet flames can activate TPRDs installed in nearby hydrogen gas cylinders. As a result, high-voltage cables exposed in the lower area of a vehicle can ignite within seconds. There was a 9.5-kW/m2 area around the vehicle (which can result in casualties) at a distance of ~5 m from the hydrogen gas cylinder, and a 37.5-kW/m2 area (which can cause significant damage) in the form of an inverted triangle toward the lower section of the vehicle. We believe that the risk factors analyzed herein should be considered for addressing accidents in hydrogen vehicles.

Development of Safety Assessment for Hydrogen Fuel Cell Vehicle (수소연료전지 자동차 안전성 평가기술 개발)

  • Yong, Gee Joong;Lee, Kwang Bum
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.5
    • /
    • pp.500-508
    • /
    • 2014
  • In the ongoing debates over the need to identify new sources of energy and to reduce the emissions of greenhouse gases. Hydrogen has emerged as one of the most promising alternatives due to its emissions from the vehicle being virtually zero. The governments have identified the development of regulations and standards as one of the key requirements for commercialization of HFCV. Regulations and standards will help overcome technological barriers to commercialization. The development of Global Technical Regulation (GTR) for HFCV occurred under the World Forum for Harmonization of Vehicle Regulations. Development of a technique for safety assessment of HFCV include four tasks, research for regulation system and policy, hydrogen safety, vehicle operation safety and protection against high-voltage. The objective is to establish a technique for safety assessment and amend safety standards for HFCV and consequently reflect research results to vehicle management policy. We devised safety standards and evaluation techniques with regard to high-pressure gas and high voltage of hydrogen fuel cell vehicle. KMVSS for HFCV was amended to June 10, 2014. including the results of the safety assessment technology for high-voltage and hydrogen characteristics.

Well-to-Wheel Greenhouse Gas Emissions Analysis of Hydrogen Fuel Cell Vehicle - Hydrogen Produced by Naphtha Cracking (나프타 기반 수소 연료전지 자동차의 전과정 온실가스 발생량 분석)

  • Kim, Myoungsoo;Yoo, Eunji;Song, Han Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.2
    • /
    • pp.157-166
    • /
    • 2017
  • The Fuel Cell Electric Vehicle(FCEV) is recently evolving into a new trend in the automobile industry due to its relatively higher efficiency and zero greenhouse gas(GHG) emission in the tailpipe, as compared to that of the conventional internal combustion engine vehicles. However, it is important to analyze the whole process of the hydrogen's life cycle(from extraction of feedstock to vehicle operation) in order to evaluate the environmental impact of introducing FCEV upon recognizing that the hydrogen fuel, which is used in the fuel cell stack, is not directly available from nature, but instead, it should be produced from naturally available resources. Among the various hydrogen production methods, ${\sim}54.1%^{8)}$ of marketed hydrogen in Korea is produced from naphtha cracking process in the petrochemical industry. Therefore, in this study, we performed a well-to-wheels(WTW) analysis on the hydrogen fuel cycle for the FCEV application by using the GREET program from the US Argonne National Laboratory with Korean specific data. As a result, the well-to-tank and well-to-wheel GHG emissions of the FCEV are calculated as 45,638-51,472 g $CO_2eq/GJ$ and 65.0-73.4 g $CO_2eq/km$, respectively

Study on Side Impact Test Procedure of Hydrogen Bus (수소버스 측면충돌 시험방법 연구)

  • Kim, Kyungjin;Shin, Jaeho;Han, Kyeonghee;In, Jeong Min;Shim, Sojung;Kim, Siwoo
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.4
    • /
    • pp.92-98
    • /
    • 2021
  • Recently hydrogen fuel cell buses have been deployed for the public transportations. In order to introduce buses fueled by hydrogen successfully, the research results of hydrogen bus safety should be discussed and investigated significantly. Especially, Korean government drives research in terms of various applications of hydrogen energy to replace the conventional fuel energy resources and to improve the safety evaluation. Thus it is necessary to examine vehicle crashworthiness under side impact loadings. This study was focused on the simulation result evaluation of full bus model and simplified bus model with hydrogen fuel tank module and mounting system located below floor structure due to the significance of bus side impact accidents. The finite element models of hydrogen bus, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of two side impact models. Computational results and research discussion showed the conceptual side impact framework to evaluate hydrogen bus crashworthiness.

Study on Heat Transfer Characteristics by Heater Conditions of Hydrogen Sensor for Fuel Cell Electric Vehicle (연료전지 자동차용 수소센서의 히터 조건에 따른 열전달 특성에 관한 연구)

  • Suh, Hocheol;Park, Kyoungsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.1
    • /
    • pp.23-29
    • /
    • 2013
  • In recent years, development of energy conversion systems using hydrogen as an energy source has been accelerated globally. Even though hydrogen is an environment-friendly energy source, safety and effectiveness issues in storage, transportation, and usage of hydrogen should be clearly resolved in every application. Therefore, sensors for detecting hydrogen leakage, especially for fuel cell electric vehicles, should be designed to have much higher resolution and accuracy in comparison with conventional gas sensors. In this study, we conducted to determine the design parameters for the semiconductor hydrogen sensor with optimized sensing conditions under the thermal distribution characteristic and thermal transfer characteristic. The heat generation study on power supply voltage was studied for correlation analysis of thermal energy according to the power supply voltage variation from 1.0 voltage to 10.0 voltage every 0.5 voltage. And we studied for the temperature coefficient of resistance with hydrogen sensor.

Development of Air Cutoff Valve for Improving Durability of Fuel Cell (연료전지 내구성능 향상을 위한 공기차단밸브 개발)

  • Park, Jeonghee;Lee, Changha;Kwon, Hyuckryul;Kim, Chimyung;Choi, Kyusung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

Development of Fuel Cell Power System for Unmanned Aerial Vehicle (무인 항공기용 연료 전지 동력 시스템 개발)

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.87-90
    • /
    • 2007
  • Fuel cell power system was developed for high-endurance unmanned aerial vehicle (UAV). Liquid chemical hydride was selected as a fuel due to its high energy density. Liquid storage of the fuel is an ideal alternative solution of the existing compressed hydrogen storage. The fueling system that extracts hydrogen from chemical hydride consists of catalytic reactor, micro-pump, fuel cartridge, separator, and controller. The fuel cell power system including the fueling system and the fuel cell that generates electricity was integrated into a proposed UAV. The performance verification of the fuel cell power system was performed to use as a power plant of the UAV.

  • PDF

The Feasibility Study on Small-scale Prototype Electric Railway Vehicle Application using Fuel Cell Generation System (연료전지 발전시스템을 이용한 축소형 철도차량 적용 선행연구)

  • Jung, No-Geon;Chang, Chin-Young;Chang, Sang-Hoon;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.184-190
    • /
    • 2014
  • Fuel cell power system, unlike conventional energy sources, converts chemical energy into electrical energy through electrochemical reaction of hydrogen and oxygen. In recent years, railway field as well as mobile fuel cell power system is being studying actively with development of hydrogen storage technologies. This paper presents the feasibility study on small-scale prototype electric railway vehicle application using fuel cell generation system. it is confirmed that proposed fuelcell-battery hybrid system shows good response characteristic about speed and torque based on design of parameter on system. Also as results of response for proposed system modeling, it show that powering mode and braking mode of system is controlled by switching devices of converters.