DOI QR코드

DOI QR Code

A Study on the Development of Safety Standard through the Risk Assessment for Fuel Cell System Applied to UAV

무인 비행체용 연료전지 시스템 위험요소 분석을 통한 안전기준 개발 연구

  • TAEHEON KIM (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • JAEUK CHOI (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • INROK CHO (Institute of Gas Safety R&D, Korea Gas Safety Corporation) ;
  • JUNGWOON LEE (Institute of Gas Safety R&D, Korea Gas Safety Corporation)
  • 김태헌 (한국가스안전공사 가스안전연구원) ;
  • 최재욱 (한국가스안전공사 가스안전연구원) ;
  • 조인록 (한국가스안전공사 가스안전연구원) ;
  • 이정운 (한국가스안전공사 가스안전연구원)
  • Received : 2023.11.30
  • Accepted : 2024.02.06
  • Published : 2024.02.28

Abstract

Fuel cell powered unmanned aerial vehicles (UAV) are globally being developed for various application according to hydrogen roadmap. However, safety standards for hydrogen fuel cell for UAV have not been established. Therefore, in this study, we derive safety data based on risk assessment to develop safety standards for fuel cells for UAV. We use fault tree analysis method which is broadly used in hydrogen facilities as a risk assessment tool. We set hydrogen leaks and fires as top events and derived the basic events. Safety data for the basic events were derived by quoting overseas safety standards related to fuel cells. The safety data will be used for developing fuel cell inspection standard according to Act on Hydrogen Economy Promotion and Hydrogen Safety Management.

Keywords

Acknowledgement

본 연구는 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원을 받아 수행한 연구임(연구 번호: 20213030030100, 최대이륙중량 200kg급 비행체용 순정격출력 30 kW급 연료전지 파워팩 시스템 개발).

References

  1. J. Apeland, D. Pavlou, and T. Hemmingsen, "Suitability analysis of implementing a fuel cell on a multirotor drone", Journal of Aerospace Technology and Management, Vol. 12, e3220, 2020, doi: https://doi.org/10.5028/jatm.v12.1172.
  2. T. H. Bradley, B. A. Moffitt, D. N. Mavris, and D. E. Parekh, "Development and experimental characterization of a fuel cell powered aircraft", Journal of Power Sources, Vol. 171, No. 2, 2007, pp. 793-801, doi: https://doi.org/10.1016/j.jpowsour.2007.06.215.
  3. J. Renau, A. Lozano, J. Barroso, J. Miralles, J. Martin, F. Sanchez, and F. Barreras, "Use of fuel cell stacks to achieve high altitudes in light unmanned aerial vehicles", International Journal of Hydrogen Energy, Vol. 40, No. 42, 2015, pp. 14573-14583, doi: https://doi.org/10.1016/j.ijhydene.2015.02.071.
  4. D. Lee, K. Ahn, and Y. Kim, "Study on sizing calculation method of fuel cell propulsion multirotor", Journal of Hydrogen and New Energy, Vol. 32. No. 6, 2021, pp. 542-550, doi: https://doi.org/10.7316/KHNES.2021.32.6.542.
  5. Y. D. Jo, S. S. Tak, K. S. Choi, J. R. Lee, and K. S. Park, "Analysis of hydrogen accident in Korea", Journal of Hydrogen and New Energy, Vol. 15, No. 1, 2004, pp. 82-87. Retrieved from https://koreascience.kr/article/JAKO200430360539725.page.
  6. Korea Gas Safety Corporation (KGS), "2022 gas accident yearbook", KGS, 2023. Retrieved from https://www.kgs.or.kr/kgs/ABCA/board.do?searchBoardSn=96879.
  7. C. E. Lin and P. C. Shao, "Failure analysis for an unmanned aerial vehicle using safe path planning", Journal of Aerospace Information Systems, Vol. 17, No. 7, 2020, pp. 358-369, doi: https://doi.org/10.2514/1.I010795.
  8. J. Y. Lee and G. J. Collins, "Risk analysis of lightning effects in aircraft systems", In: 2017 IEEE Aerospace Conference; 2017 Mar 4-11; Big Sky. Piscataway: IEEE, 2017, pp. 1-9, doi: https://doi.org/10.1109/AERO.2017.7943671.
  9. S. Collong and R. Kouta, "Fault tree analysis of proton exchange membrane fuel cell system safety", International Journal of Hydrogen Energy, Vol. 40, No. 25, 2015, pp. 8248-8260, doi: https://doi.org/10.1016/j.ijhydene.2015.04.101.
  10. A. Rodionov, H. Wilkening, and P. Moretto, "Risk assessment of hydrogen explosion for private car with hydrogendriven engine", International Journal of Hydrogen Energy, Vol. 36, No. 3, 2011, pp. 2398-2406, doi: https://doi.org/10.1016/j.ijhydene.2010.04.089.
  11. H. Kim, J. S. Koh, Y. Kim, and T. G. Theofanous, "Risk assessment of membrane type LNG storage tanks in Korea-based on fault tree analysis", Korean Journal of Chemical Engineering, Vol. 22, 2005, pp. 1-8, doi: https://doi.org/10.1007/BF02701454.
  12. G. R. Biswal, R. P. Maheshwari, and M. L. Dewal, "Cool the generators: system reliability and fault tree analysis of hydrogen cooling systems," IEEE Industrial Electronics Magazine, Vol. 7, No. 1, 2013, pp. 30-40, doi: https://doi.org/10.1109/MIE.2012.2231728.