• 제목/요약/키워드: Hydrogen compression

검색결과 138건 처리시간 0.032초

냉시동시 압축착화 조건의 상관관계에 관한 수소 HCCI 기관의 실험적 연구 (An Experimental Study on Correlation of Compression Ignition Condition at Cold Start with Hydrogen HCCI Engine)

  • 이광주;이종구;안병호;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제23권6호
    • /
    • pp.628-633
    • /
    • 2012
  • It was found that the pure hydrogen-air pre-mixture was self-ignited at a high compression ratio without any assisting method in room temperature, thus refuting the preconception that compression ignition of hydrogen engine was impossible. Therefore, in order to analyze the correlation of compression ignition condition at cold start with hydrogen HCCI engine clearly, the possibility of compression igniting compression ratio is investigated with the change of equivalence ratio and engine speed, experimentally. As the results, it is confirmed that the possibility of compression-igniting compression ratio at cold start was decreased by increasing equivalence ratio due to decreasing auto-ignition temperature. In addition, it is grasped that the possibility of compression-igniting compression ratio at cold start is decreased around 14.9% by increasing engine speed at same supply energy.

가변압축비 수소기관의 개발에 관한 연구 (A Study on Development of the Variable Compression Ratio Hydrogen Fueled Engine)

  • 김상만;이종윤;이종태;이성열
    • 한국수소및신에너지학회논문집
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 1993
  • To find performance and knock limit for compression ratio in hydrogen fueled engine, the variable compression ratio hydrogen fueled engine which was able to vary compression ratio during firing was manufactured and estimated. The characteristics of the variable compression ratio hydrogen fueled engine were as follows : 1) compression ratio variation by moving of cylinder head, 2) OHC which can be realized low S/V ratio, short flame propagation distance and unvariable configuration of combustion chamber for compression ratio variation, 3) direct injection of hydrogen gas to restrict back fire.

  • PDF

압축비와 수소첨가율에 따른 중형 수소-천연가스 기관의 제반 성능특성 (The Characteristics of Performance in the Medium Duty Hydrogen-CNG Fueled Engine with Compression Ratio and Rate of Hydrogen Addition)

  • 김용태;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제16권2호
    • /
    • pp.191-198
    • /
    • 2005
  • Adding hydrogen gas in natural gas leads to stable combustion in internal combustion engine and its performances rely on compression ratio. To analyze the effects of compression ratio and rate of hydrogen addition on the engine performance, the characteristics of overall engine performance including emission were investigated by using the medium duty natural gas fueled engine. As results, it was found that compression ratio occurred knock was nearby compression ratio, $\varepsilon$=14 for the case that hydrogen was enriched in the natural gas fueled engine. But slight knock was occurred at $\varepsilon$=14.7 in the case of neat natural gas. Also HC and $CO_2$ were reduced around 80% and 20% respectively when the rate of hydrogen addition was increased to 50% and compression ratio from $\varepsilon$=13 to $\varepsilon$=14.7.

전기화학적 수소 압축기 기술 (A Review of Electrochemical Hydrogen Compressor Technology)

  • 김상경
    • 한국수소및신에너지학회논문집
    • /
    • 제31권6호
    • /
    • pp.578-586
    • /
    • 2020
  • There is growing interest worldwide in a hydrogen economy that uses hydrogen as an energy medium instead of hydrocarbon-based fossil fuels as a way to combat climate change. Since hydrogen has a very low energy density per unit volume at room temperature, hydrogen must be compressed and stored in order to use as an energy carrier. There are mechanical and non-mechanical methods for compressing hydrogen. The mechanical method has disadvantages such as high energy consumption, durability problems of moving parts, hydrogen contamination by lubricants, and noise. Among the non-mechanical compression methods, electrochemical compression consumes less energy and can compress hydrogen with high purity. In this paper, research trends are reviewed, focusing on research papers on electrochemical hydrogen compression technology, and future research directions are suggested.

직접분사식 스파크점화 수소기관의 연소 및 성능특성에 미치는 압축비의 영향 (The Effect of Compression Ratio on Combustion and Performance Characteristics of Direct Injection Spark Ignition Hydrogen Fueled Engine.)

  • 권병준;이종윤;이종태;이성열
    • 한국자동차공학회논문집
    • /
    • 제1권2호
    • /
    • pp.17-26
    • /
    • 1993
  • As fundamental step to find the suitable compression ratio of hydrogen fueled engine, performance and combustion characteristics of that engine were analyzed. Qualitative characteristics of the hydrogen fueled engine were similar to that of the gasoline engine, and it was also found that knock limit compression ratio of the hydrogen fueled engine was higher than that of the gasoline engine.

  • PDF

대형 수소-천연가스 기관의 수소첨가율에 따른 노크발생 한계압축비 (The Limit Compression Ratio of Knock Occurring by $R_{dH2}$ in the Heavy Duty Hydrogen-CNG Fueled Engine)

  • 김용태;이종태
    • 한국자동차공학회논문집
    • /
    • 제14권2호
    • /
    • pp.84-91
    • /
    • 2006
  • A heavy duty hydrogen-natural gas fueled engine can obtain stable operation at ultra lean conditions and reduce emissions extremely. Reduction of $CO_2$ in its engine is one of the most benefit. In this study, rate of hydrogen addition($R_{dH2}$) and compression ratio($\varepsilon$) were investigated including performance of this engine. As results, it was found that phenomenon of pressure oscillation when increasing $R_{dH2}$ and $\varepsilon$, it means occurring knock. It consider that pressure oscillation was increased due to fast burning speed of hydrogen. Even if same compression ratio, pressure oscillation was remarkable increased according to increasing $R_{dH2}$. Therefore, limit compression ratio of knock occurring was reduced by increasing $R_{dH2}$.

이중분사식 수소기관의 적정압축비에 관한 연구 (A Study on the Suitable Compression Ratio of Hydrogen Fueled Engine with Dual Injection)

  • 김윤영;위신환;이종태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.1001-1007
    • /
    • 2001
  • Hydrogen fueled engine with dual injection can achieve high power and high efficiency simultaneously. In this study, the suitable compression ratio of hydrogen fueled engine with dual injection were investigated including performance of this engine according to variation of compression ratio. As results, it was found that the suitable compression ratio of that was about CR=11, and torque and thermal efficiency increased by 6% and 7% respectively.

  • PDF

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

The Effect of Hydrogen Enrichment on Exhaust Emissions and Thermal Efficiency in a LPG fuelled Engine

  • Park, Gyeung-Ho;Han, Sung-Bin;Chung, Yon-Jong
    • Journal of Mechanical Science and Technology
    • /
    • 제17권8호
    • /
    • pp.1196-1202
    • /
    • 2003
  • The concept of hydrogen enriched LPG fuelled engine can be essentially characterized as low emissions and reduction of backfire for hydrogen engine. The purpose of study is obtaining low-emission and high-efficiency in LPG engine with hydrogen enrichment. In order to determine the ideal compression ratio, a variable compression ratio single cylinder engine was developed. The objective of this paper is to clarify the effects of hydrogen enriched LPG fuelled engine on exhaust emission, thermal efficiency and performance. The compression ratio of 8 was selected to minimize abnormal combustion. To maintain equal heating value, the amount of LPG was decreased, and hydrogen was gradually added. In a similar manner, the relative air-fuel ratio was increased from 0.8 to 1.3 in increment of 0.1, and the ignition timing was controlled to be at MBT each case.

HCCI 수소기관에서 운전영역확장을 위한 EGR 효과 분석 (An Analysis on the Effects of EGR to Extend Operation Region for a HCCI Hydrogen Engine)

  • 이건식;김진구;변창희;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제26권6호
    • /
    • pp.560-566
    • /
    • 2015
  • HCCI (Homogeneous Charge Compression Ignition) hydrogen engine has relatively narrower operation range caused by knock occurrence due to the rapid pressure rising by using higher compression ratio. In this study, EGR as one of the countermeasure methods is considered to extend operation range of HCCI hydrogen engine. Also, the effects of hydrogen EGR are compared with the effects of EGR using hydrocarbon fuel. Hydrocarbon EGR is carried out by adding carbon dioxide to exhaust gas of HCCI hydrogen engine. As the results, EGR has positive effects on a HCCI hydrogen engine in reducing rate of pressure rise as same as the other engines used hydrocarbon fuels. However, the effects of hydrogen EGR are better than those of hydrocarbon EGR in decreasing minimum compression ratio and rate of pressure rise. When applying EGR to HCCI hydrogen engine by 20% rate, the rate of pressure rise decreases by 58% and it results in about 48% increase of the operation range in terms of supply energy.