• Title/Summary/Keyword: Hydrogen bond

Search Result 593, Processing Time 0.027 seconds

Mutant Recombinant Hemoglobin (${\alpha}96Val{\rightarrow}Tyr$) Exhibits Low Oxygen Affinity and High Cooperativity

  • Choi, Jong-Whan;Yeh, Byung-Il;Han, Dong-Pyou;Lee, Hyean-Woo;Sohn, Joon Hyung;Jung, Seun-Ho;Kim, Hyun-Won
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.595-599
    • /
    • 1998
  • To investigate conformational information of a low oxygen affinity recombinant hemoglobin (rHb) containing $96Val{\rightarrow}Trp$ mutation at the ${\alpha}96$ position, we ave produced rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr$), using the Escherichia coli expression system and site-directed mutagenesis. The oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Phe$) is similar to that of human normal adult hemoglobin (Hb A). However, the oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Tyr$) showed much lower oxygen affinity than Hb A which is similar to that of rHb (${\alpha}96Val{\rightarrow}Tyr$), providing an opportunity as a potential candidate for a hemoglobin-based blood substitute. Both rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr)$ showed high cooperativity in oxygen binding. IH-NMR spectroscopy shows that both rHb (${\alpha}96Val{\rightarrow}Phe$) and rHb (${\alpha}96Val{\rightarrow}Tyr$) have very similar tertiary structure around the heme pockets and uaternary structure in the ${\alpha}_1/{\beta}_2$ subunit interface ompared to Hb A. The low oxygen affinity of rHb (${\alpha}96Val{\rightarrow}Tyr$) has been suggested to be due to a hydrogen bond caused by an extra hydroxyl group not present in rHb (${\alpha}96Val{\rightarrow}Phe$). However, investigation of the carbonmonoxy form of rHb (${\alpha}96Val{\rightarrow}Phe$) and (${\alpha}96Val{\rightarrow}Try$) in the presence of inositol hexaphosphate at low temperature suggests that low oxygen affinity of (${\alpha}96Val{\rightarrow}Try$) may arise from a mechanism different to that of rHb (${\alpha}96Val{\rightarrow}Trp$).

  • PDF

Hexagonal Boron Nitride Monolayer Growth without Aminoborane Nanoparticles by Chemical Vapor Deposition

  • Han, Jaehyu;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.409-409
    • /
    • 2014
  • Recently hexagonal boron nitride (h-BN), III-V compound of boron and nitrogen with strong covalent $sp^2$ bond, is a 2 dimensional insulating material with a large direct band gap up to 6 eV. Its outstanding properties such as strong mechanical strength, high thermal conductivity, and chemical stability have been reported to be similar or superior to graphene. Because of these excellent properties, h-BN can potentially be used for variety of applications such as dielectric layer, deep UV optoelectronic device, and protective transparent substrate. Ultra flat and charge impurity-free surface of h-BN is also an ideal substrate to maintain electrical properties of 2 dimensional materials such as graphene. To synthesize a single or a few layered h-BN, chemical vapor deposition method (CVD) has been widely used by using an ammonia borane as a precursor. Ammonia borane decomposes into hydrogen (gas), monomeric aminoborane (solid), and borazine (gas) that is used for growing h-BN layer. However, very active monomeric aminoborane forms polymeric aminoborane nanoparticles that are white non-crystalline BN nanoparticles of 50~100 nm in diameter. The presence of these BN nanoparticles following the synthesis has been hampering the implementation of h-BN to various applications. Therefore, it is quite important to grow a clean and high quality h-BN layer free of BN particles without having to introduce complicated process steps. We have demonstrated a synthesis of a high quality h-BN monolayer free of BN nanoparticles in wafer-scale size of $7{\times}7cm^2$ by using CVD method incorporating a simple filter system. The measured results have shown that the filter can effectively remove BN nanoparticles by restricting them from reaching to Cu substrate. Layer thickness of about 0.48 nm measured by AFM, a Raman shift of $1,371{\sim}1,372cm^{-1}$ measured by micro Raman spectroscopy along with optical band gap of 6.06 eV estimated from UV-Vis Spectrophotometer confirm the formation of monolayer h-BN. Quantitative XPS analysis for the ratio of boron and nitrogen and CS-corrected HRTEM image of atomic resolution hexagonal lattices indicate a high quality stoichiometric h-BN. The method presented here provides a promising technique for the synthesis of high quality monolayer h-BN free of BN nanoparticles.

  • PDF

Analysis of ${\beta}-(1{\to}3)(1{\to}6)-Glucan$ Produced by Aureobasidium pullulans IMS-822 (Aureobasidium pullulans IMS-822가 생산하는 ${\beta}-(1{\to}3)(1{\to}6)-Glucan$의 특성 분석)

  • Lee, Seog-June;Ahn, Keug-Hyun;Park, Chan-Sun;Yoon, Byung-Dae;Kim, Min-Soo
    • Korean Journal of Microbiology
    • /
    • v.45 no.1
    • /
    • pp.63-68
    • /
    • 2009
  • The exo-polysaccharide producing microorganism, Aureobasidium pullulans IMS-822, was isolated and identified from soil. The viscosity-average molecular weight of exo-polysaccharide was calculated as $8.9{\times}10^5$ by Mark-Houwink equation. The sugar component of exo-polysaccharide was determined as glucose by HPLC analysis. The IR spectra indicated that the exo-polysaccharide has an absorption peak at 890 $cm^{-1}$ for the ${\beta}-configuration$ of D-glucan. The $^{13}C$ NMR signal at ${\delta}$ 86.62 ppm arose from the substituted C-3 of glucose. The signal at ${\delta}$ 72.11 ppm was assigned to C-6 of branched ${\beta}-(1{\to}3)-D-glucosyl$ residues. Viscosity and Congo red reaction indicated that {\beta}-(1{\to}3)(1{\to}6)-glucan$ produced by A. pullulans IMS-822 has a highly ordered hydrogen-bond dependent conformation in aqueous solution, which collapses in strong alkaline solution.

CoMFA and CoMSIA Analysis on the Fungicidal Activity against Damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide Analogues (N-phenylbenzenesulfonamide 유도체들에 의한 모잘록병균 (Pythium ultimum)의 살균활성에 관한 CoMFA 및 CoMSIA분석)

  • Jang, Seok-Chan;Kang, Kyu-Young;Sung, Nack-Do
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.1
    • /
    • pp.8-17
    • /
    • 2007
  • Three-dimensional quantitative structure-activity relationships (3D-QSARs) on the fungicidal activity against damping-off (Pythium ultimum) with N-phenylbenzenesulfonamide and N-phenyl-2-thienylsulfonamide analogues (1-34) were studied quantitatively using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indeces analysis) methodologies. On the whole, the statistical qualities of CoMSIA models with field fit alignment (FF1-FF5) were slightly higher than that of atom based fit alignment (AF1-AF5) but, the deviations of statistical quality between two alignments in case of CoMFA models were slightly lower. The statistical results of CoMFA and CoMSIA model showed that the optimized CoMSIA model (FF1: $r_{cv.}^2\;(q^2)=0.674$ & $r_{ncv.}^2=0.964$) for damping-off is better predictability and fitness for fungicidal activities than CoMFA model (AF5: $r_{cv.}^2\;(q^2)=0.616$ & $r_{ncv.}^2=0.930$). The fungicidal activities according to the information of the CoMSIA (FF1) model were dependence upon the electrostatic and hydrophobic field of the N-phenylbenzene sulfonamide analogues. Therefore, from the results of graphical analyses on the contour maps with CoMSIA (FF3) model, it is expected that the characters of R4-substituent on the N-phenyl ring as hydrophobic and hydrogen bond acceptor will be contributed to the fungicidal activity against damping-off.

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor

  • Thangapandian, Sundarapandian;Krishnamoorthy, Navaneethakrishnan;John, Shalini;Sakkiah, Sugunadevi;Lazar, Prettina;Lee, Yu-No;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.1
    • /
    • pp.52-58
    • /
    • 2010
  • Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.

Crystal Structure and Thermal Stability Study on Tetrabutylammonium Hexamolybdate [n-Bu4N]2[Mo6O19](TBAM)

  • Zhao, Pu Su;Zhao, Zhan Ru;Jian, Fang Fang;Lu, Lu De
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.553-558
    • /
    • 2003
  • The crystal structure of $[n-Bu_4N]_2[Mo_6O_{19}]$(TBAM) (n-Bu4N=tetrabutylammonium) has been determined by X-ray crystallography. It crystallizes in the monoclinic system, space group C2/c, with lattice parameters ${\alpha}$=16.314(5), b=17.288(5), c=17.776(4)${\AA}$ ${\beta}$=101.47(3), and Z=4. In $[Mo_6O{19}]^{2-}$ anion, Mo atoms occupy six vertices of octahedron and each Mo atom is coordinated by six oxygen atoms to adopt distorted octahedral coordination geometry. The average bond distance of Mo-Ot (terminal), Mo-Ob (bridged) and Mo-Oc (central) are 1.680 ${\AA}$, 1.931 ${\AA}$ and 2.325 ${\AA}$ respectively. In $[n-Bu_4N]^+$ cation, the N atom possesses a slightly distorted tetrahedral geometry. There are some potential extensive C-H ${\cdots}$ O hydrogen bonds in the lattice, by which connecte molecules and stabilize the crystal structure. Thermogravimetric analysis suggests that thermal decomposition of the title compound includes two transitions and it loses weight at 356.0 and 803.5 $^{\circ}$, respectively, and the residue presumable be $Mo_2O_2$. Accordingly, the title compound has high thermal stability.

Adhesion of Model Molecules to Metallic Surfaces, the Implications for Corrosion Protection

  • de Wit, J.H.W.;van den Brand, J.;de Wit, F.M.;Mol, J.M.C.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.50-60
    • /
    • 2008
  • The majority of the described experimental results deal with relatively pure aluminium. Variations were made in the pretreatment of the aluminum substrates and an investigation was performed on the resulting changes in oxide layer composition and chemistry. Subsequently, the bonding behavior of the surfaces was investigated by using model adhesion molecules. These molecules were chosen to represent the bonding functionality of an organic polymer. They were applied onto the pretreated surfaces as a monolayer and the bonding behavior was studied using infrared reflection absorption spectroscopy. A direct and clear relation was found between the hydroxyl fraction on the oxide surfaces and the amount of molecules that subsequently bonded to the surface. Moreover, it was found that most bonds between the oxide surface and organic functional groups are not stable in the presence of water. The best performance was obtained using molecules, which are capable of chemisorption with the oxide surface. Finally, it was found that freshly prepared relatively pure aluminum substrates, which are left in air, rapidly lose their bonding capacity towards organic functional groups. This can be attributed to the adsorption of contamination and water to the oxide surface. In addition the adhesion of a typical epoxy-coated aluminum system was investigated during exposure to water at different temperatures. The coating was found to quite rapidly lose its adhesion upon exposure to water. This rapid loss of adhesion corresponds well with the data where it was demonstrated that the studied epoxy coating only bonds through physisorptive hydrogen bonding, these bonds not being stable in the presence of water. After the initial loss the adhesion of the coating was however found to recover again and even exceeded the adhesion prior to exposure. The improvement could be ascribed to the growth of a thin oxyhydroxide layer on the aluminum substrate, which forms a new, water-stable and stronger bond with the epoxy coating. Two routes for improvement of adhesion are finally decribed including an interphasial polymeric thin layer and a treatment in boiling water of the substrate before coating takes place. The adhesion properties were finely also studied as a function of the Mg content of the alloys. It was shown that an enrichment of Mg in the oxide could take place when Mg containing alloys are heat-treated. It is expected that for these alloys the (hydr)oxide fraction also depends on the pre-treatment and on the distribution of magnesium as compared to the aluminium hydroxides, with a direct impact on adhesive properties.

The Crystal and Molecular Structure of 6-Ethyl-5,6-Dihydrouracil (6-에틸-5,6-디히드로우라실의 결정 및 분자구조)

  • An, Choong Tai
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.3
    • /
    • pp.161-166
    • /
    • 1996
  • 6-ethyl-5,6-dihydrouracil($C_6H_10N_2O_2$) is monoclinic, space group $$P2_{1}c}$$ with a=10.302(2), b=10.419(3), $c=7.095(1)\AA$, $\beta=106.6(0)$, Z=4, $V=729.7(3)\AA$^3$$, $D_c=1.29 g/cm^3,\;{\lambda}(MoK\alpha)=0.71073\AA$, $\mu=0.010cm^{-1}$, F(000)=304, and R=0.054 for 1070 unique observed reflection with F>4.0 $\sigma(F).$ The structure was solved by direct methods and refined by full-matrix least-squares refinement with the fixed C-H bond length at $0.96\AA.$ The hydrouracil molecule makes an envelope conformation with the ethyl substituent oriented to an axial position attainable to a varying degree of steric strain. There are two intermolecular hydrogen-bondings via N-H---O interactions, being nearly parallel to the 100 plane. The shortest distance between molecules is $3.187\AA$ of C(4) and O(8) (-x,-y, 1-z).

  • PDF

Pharmacophore Identification for Peroxisome Proliferator-Activated Receptor Gamma Agonists

  • Sohn, Young-Sik;Lee, Yu-No;Park, Chan-In;Hwang, S-Wan;Kim, Song-Mi;Baek, A-Young;Son, Min-Ky;Suh, Jung-Keun;Kim, Hyong-Ha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.1
    • /
    • pp.201-207
    • /
    • 2011
  • Peroxisome proliferator-activated receptors (PPARs) are members of nuclear receptors and their activation induces regulation of fatty acid storage and glucose metabolism. Therefore, the $PPAR\gamma$ is a major target for the treatment of type 2 diabetes mellitus. In order to generate pharmacophore model, 1080 known agonists database was constructed and a training set was selected. The Hypo7, selected from 10 hypotheses, contains four features: three hydrogen-bond acceptors (HBA) and one general hydrophobic (HY). This pharmacophore model was validated by using 862 test set compounds with a correlation coefficient of 0.903 between actual and estimated activity. Secondly, CatScramble method was used to verify the model. Hence, the validated Hypo7 was utilized for searching new lead compounds over 238,819 and 54,620 chemical structures in NCI and Maybridge database, respectively. Then the leads were selected by screening based on the pharmacophore model, predictive activity, and Lipinski's rules. Candidates were obtained and subsequently the binding affinities to $PPAR\gamma$ were investigated by the molecular docking simulations. Finally the best two compounds were presented and would be useful to treat type 2 diabetes.

Pharmacophore Mapping and Virtual Screening for SIRT1 Activators

  • Sakkiah, Sugunadevi;Krishnamoorthy, Navaneethakrishnan;Gajendrarao, Poornima;Thangapandian, Sundarapandian;Lee, Yun-O;Kim, Song-Mi;Suh, Jung-Keun;Kim, Hyong-Ha;Lee, Keun-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.5
    • /
    • pp.1152-1156
    • /
    • 2009
  • Silent information regulator 2 (Sir2) or sirtuins are NAD(+)-dependent deacetylases, which hydrolyze the acetyllysine residues. In mammals, sirtuins are classified into seven different classes (SIRT1-7). SIRT1 was reported to be involved in age related disorders like obesity, metabolic syndrome, type II diabetes mellitus and Parkinson’s disease. Activation of SIRT1 is one of the promising approaches to treat these age related diseases. In this study, we have used HipHop module of CATALYST to identify a series of pharmacophore models to screen SIRT1 enhancing molecules. Three molecules from Sirtris Pharmaceuticals were selected as training set and 607 sirtuin activator molecules were used as test set. Five different hypotheses were developed and then validated using the training set and the test set. The results showed that the best pharmacophore model has four features, ring aromatic, positive ionization and two hydrogen-bond acceptors. The best hypothesis from our study, Hypo2, screened high number of active molecules from the test set. Thus, we suggest that this four feature pharmacophore model could be helpful to screen novel SIRT1 activator molecules. Hypo2-virtual screening against Maybridge database reveals seven molecules, which contains all the critical features. Moreover, two new scaffolds were identified from this study. These scaffolds may be a potent lead for the SIRT1 activation.