Browse > Article
http://dx.doi.org/10.5012/bkcs.2010.31.01.052

Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor  

Thangapandian, Sundarapandian (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Krishnamoorthy, Navaneethakrishnan (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
John, Shalini (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Sakkiah, Sugunadevi (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Lazar, Prettina (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Lee, Yu-No (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Lee, Keun-Woo (Division of Applied Life Science (BK21 Program), Environmental Biotechnology National Core Research Center(EB-NCRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University)
Publication Information
Abstract
Human histamine H1 receptor (HHR1) is a G protein-coupled receptor and a primary target for antiallergic therapy. Here, the ligand-based three-dimensional pharmacophore models were built from a set of known HHR1 inverse agonists using HypoGen module of CATALYST software. All ten generated pharmacophore models consist of five essential features: hydrogen bond acceptor, ring aromatic, positive ionizable and two hydrophobic functions. Best model had a correlation coefficient of 0.854 for training set compounds and it was validated with an external test set with a high correlation value of 0.925. Using this model Maybridge database containing 60,000 compounds was screened for potential leads. A rigorous screening for drug-like compounds unveiled RH01692 and SPB00834, two novel molecules for HHR1 with good CATALYST fit and estimated activity values. The new lead molecules were docked into the active site of constructed HHR1 homology model based on recently crystallized squid rhodopsin as template. Both the hit compounds were found to have critical interactions with Glu177, Phe432 and other important amino acids. The interpretations of this study may effectively be deployed in designing of novel HHR1 inverse agonists.
Keywords
Pharmacophore; Inverse agonists; Histamine H1 receptor; Lipinski's rule; LigandFit;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 Steven, M. F.; Tom, I. B.; Richard, R. N.; Edward, M. R.; Jean-Phillipe, P.; Anthony, P. D.; Michael, S.; Anthony, J. H. Pharmacol. Rev. 2005, 57, 279.   DOI   ScienceOn
2 Hofstra, C. L.; Desai, P. J.; Thurmond, R. L.; Fung-Leung, W. P. J. Pharmacol. Exp. Ther. 2003, 305, 1212.   DOI   ScienceOn
3 Hill, S. J.; Ganellin, C. R.; Timmerman, H.; Schwartz, J. C.; Shankley, N. P.; Young, J. M.; Schunack, W.; Levi, R.; Haas, H. L. Pharmacol. Rev. 1997, 49, 253.
4 Maria, J. M.; Silvio, G. J. TRENDS in Pharmacological Sciences 2001, 221, 368.
5 Louis, M. L. Mol. Biotechnol. 2008, 39, 239.   DOI   ScienceOn
6 Willem, S.; Ineke van, W.; Adriaan, P. I. Med. Res. Rev. 2005, 25, 398.   DOI   ScienceOn
7 Prather, L. P. Sci. STKE. 2004, 215, 1.
8 Govoni, M.; Bakker, R. A.; Wetering, I.; Smit, J. M.; Menge, M. B. P.; Timmerman, H.; Elz, S.; Schunack, W.; Leurs, R. J. Med. Chem. 2003, 46, 5812.   DOI   ScienceOn
9 Tao, Y. Pharmacol. Ther. 2008, 120, 129.   DOI   ScienceOn
10 CATALYST 4.10 User Guide. 2005 Accelrys Inc., San Diego, CA, USA.
11 Sakkiah, S.; Krishnamoorthy, N.; Gajendrarao, P.; Thangapandian, S. Lee, Y.; Suh, J. K.; Kim, H. H.; Lee, K. W. Bull. Korean Chem. Soc. 2009, 30, 1152-1156.   DOI   ScienceOn
12 Lee, Y.; Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2007, 28, 561-566.   DOI   ScienceOn
13 Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. Bioinformatics 2006, 22, 195.   DOI   ScienceOn
14 Kopp, J.; Schwede, T. Nucleic Acids Research 2004, 32, D230.   DOI   ScienceOn
15 Schwede, T.; Kopp, J.; Guex, N.; Peitsch, M. C. Nucleic Acids Research 2003, 31, 3381.   DOI   ScienceOn
16 Guex, N.; Peitsch, M. C. Electrophoresis 1997, 18, 2714.   DOI   ScienceOn
17 Peitsch, M. C. Nat. Biotechnol. 1995, 13, 658.   DOI
18 Laskowski, R. A.; MacArthur, M. W.; Moss, D.; Thornton, J. M. J. Appl. Cryst. 1993, 26, 283.   DOI   ScienceOn
19 Smellie, A.; Kahn, S. D.; Teig, S. J. Chem. Inf. Comput. Sci. 1995, 35, 285.   DOI   ScienceOn
20 Smellie, A.; Kahn, S. D.; Teig, S. J. Chem. Inf. Comput. Sci. 1995, 35, 295.   DOI   ScienceOn
21 Venkatachalam, C. M.; Jiang, X.; Oldfield, T.; Waldman, M. J. Mol. Graph. Model 2003, 21, 289.   DOI   ScienceOn
22 Lipinski, C. A.; Lobbardo, F.; Dominy, B. W.; Feeny, P. J. Adv. Drug. Delivery Rev. 1997, 23, 3.   DOI   ScienceOn
23 Venkatapathy, R.; Moudgal, C. J.; Bruce, R. M. J. Chem. Inf. Comput. Sci. 2004, 44, 1623.   DOI   ScienceOn
24 Kerstin, W.; Anton, M. T.; Martine, J. S.; Ronald, K.; Timmerman, H.; Rob, L. J. Biol. Chem. 1999, 274, 29994.   DOI
25 Bissantz, C.; Bernard, P.; Hibert, M.; Rognan, D. Proteins 2003, 50, 5.   DOI   ScienceOn
26 Brooks, B. R.; Brucolleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M. J. Comput. Chem. 1983, 4, 187.   DOI
27 Smellie, A.; Teig, S. L.; Towbin, P. J. Comput. Chem. 1995, 16, 171.   DOI   ScienceOn
28 Anton, M. T.; Marc, J. D.; Hendrik, T.; Gabrielle, M. D. Quantitative Structure-Activity Relationships 2008, 11, 348.   DOI
29 Bharatham, N.; Bharatham, K.; Lee, K. W. J. Mol. Graph. Model 2007, 25, 813.   DOI   ScienceOn
30 Robert, K.; Zoltan, K.; Gyorgy, M. K. European J. Med. Chem. 2004, 39, 959.   DOI   ScienceOn