Analysis of ${\beta}-(1{\to}3)(1{\to}6)-Glucan$ Produced by Aureobasidium pullulans IMS-822

Aureobasidium pullulans IMS-822가 생산하는 ${\beta}-(1{\to}3)(1{\to}6)-Glucan$의 특성 분석

  • Lee, Seog-June (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Ahn, Keug-Hyun (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Park, Chan-Sun (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon, Byung-Dae (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Min-Soo (Bioindustry Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • 이석준 (한국생명공학연구원 생물산업기술연구센터) ;
  • 안극현 (한국생명공학연구원 생물산업기술연구센터) ;
  • 박찬선 (한국생명공학연구원 생물산업기술연구센터) ;
  • 윤병대 (한국생명공학연구원 생물산업기술연구센터) ;
  • 김민수 (한국생명공학연구원 생물산업기술연구센터)
  • Published : 2009.03.31

Abstract

The exo-polysaccharide producing microorganism, Aureobasidium pullulans IMS-822, was isolated and identified from soil. The viscosity-average molecular weight of exo-polysaccharide was calculated as $8.9{\times}10^5$ by Mark-Houwink equation. The sugar component of exo-polysaccharide was determined as glucose by HPLC analysis. The IR spectra indicated that the exo-polysaccharide has an absorption peak at 890 $cm^{-1}$ for the ${\beta}-configuration$ of D-glucan. The $^{13}C$ NMR signal at ${\delta}$ 86.62 ppm arose from the substituted C-3 of glucose. The signal at ${\delta}$ 72.11 ppm was assigned to C-6 of branched ${\beta}-(1{\to}3)-D-glucosyl$ residues. Viscosity and Congo red reaction indicated that {\beta}-(1{\to}3)(1{\to}6)-glucan$ produced by A. pullulans IMS-822 has a highly ordered hydrogen-bond dependent conformation in aqueous solution, which collapses in strong alkaline solution.

국내 토양시료로부터 점액성 고분자물질을 생산하는 효모 균주를 분리 및 동정하여 Aureobasidium pullulans IMS-822라 명명하였다. A. pullulans IMS-822가 생산하는 외분비성 폴리머를 정제 및 동결 건조하여 구조분석을 수행하였다. HPLC를 이용한 구성당 성분분석에서 포도당 단일성분으로 구성되어 있음을 확인하였다. FT-IR을 이용한 구조분석에서는 890 $cm^{-1}$ 부근에서의 ${\beta}-configuration$을 확인하였으며, 3300 $cm^{-1}$ 부근으로 shift 된 완만한 -OH stretching은 폴리머를 구성하고 있는 분자 사이에 강한 수소결합이 작용하고 있는 것으로 추측되었다. $^{13}C-NMR$ 분석결과는 A. pullulans IMS-822가 생산하는 외분비형 다당류인 (1,3)-linked ${\beta}-D-glucosyl$ unit의 6개의 탄소, ${\delta}$ 105.05 ppm (C1), 75.82 ppm (C2), 86.62 ppm (C3), 70.61 ppm (C4), 78.13 ppm (C5), 63.22 ppm (C6) 및 ${\beta}-(1,3)D-glucosyl$ 잔기에 분기사슬 되어 있는 ${\delta}$ 72.11 ppm의 C-6의 signal을 확인할 수 있었다. A. pullulans IMS-822가 생산하는 ${\beta}-(1{\to}3)(1{\to}6)-glucan$의 알칼리 수용액(0.5%, w/v)에 24.0 ${\mu}M$의 Congo red 첨가하여 30분간 반응시킨 후 $400{\sim}700$ nm의 범위에서 최대흡수파장의 변화를 조사한 결과 NaOH의 농도가 증가함에 따라 최대흡수파장은 장파장으로 이동하여 498 nm에서 515 nm까지 이동하였다. 최대흡수파장은 0.4 M NaOH 농도에서 점차로 감소하여 506 nm 부근에서 안정화되는 것으로 나타남으로써 순차적 구조를 가지는 것으로 확인되었다.

Keywords

References

  1. 박용일. 2000. 미생물다당류의 구조와 세포생리학적 기능. 미생물과 산업 26, 18-30
  2. 서형필, 김지모, 신현동, 김태권, 장희정, 박복련, 이진우. 2002. Aureobasidium pullulans SM-2001에 의한 $\beta$-1,3/1,6-글루칸의 생산. 한국생물공학회지 17, 376-380
  3. Barrett, D. 2002. From natural products to clinically useful antifungal. Biochim. Biophys. Acta. 1587, 224-233 https://doi.org/10.1016/S0925-4439(02)00085-6|
  4. Blaschek, W., J. Kasbauer, J. Kraus, and G. Franz. 1992. Pythium aphanidermatum: culture, cell wall composition, and isolation and structure of antitumor storage and solubilized cell-wall (1→3)(1→6)-$\beta$-D-glucans. Carbohydr. Res. 231, 293-307 https://doi.org/10.1016/0008-6215(92)84026-O
  5. Blaschek, W., M. Schultz, J. Kraus, and G. Franz. 1992. Antitumor activity of $\beta$-1,3/1,6-glucans from Phytophthora species. Planta Med. 58, 39-42 https://doi.org/10.1055/s-2006-961386
  6. Demleitner, S., J. Kraus, and G. Franz. 1992. Synthesis and antitumor activity of derivatives of curdlan and lichenan branched at C-6. Carbohydr. Res. 226, 239-246 https://doi.org/10.1016/0008-6215(92)84071-Y
  7. Drzikova, B., G. Dongowski, and E. Gebhardt. 2005. Dietary fiberrich oat-based products affect seriul lipids, microbiota, formation of short-chain fatty acids and steroids in rats. Br. J. Nutr. 94, 1012-1025 https://doi.org/10.1079/BJN20051577
  8. Dong, Q., L. Jia, and J. Fang. 2006. A $\beta$-D-glucan isolated from the fruiting bodies of Hericium erinaceus and its aqueous conformation. Carbohydr. Res. 341, 791-795 https://doi.org/10.1016/j.carres.2006.01.022
  9. Fabre, I., M. Bruneteau, P. Ricci, and G. Michel. 1984. Isolation and structural study on Phytophthora parasitica. Eur. J. Biochem. 142, 99-103 https://doi.org/10.1111/j.1432-1033.1984.tb08255.x
  10. Fujimoto, K., M. Tomonaga, and S. Goto. 2006. A case of recurrent ovarian cancer successfully treated with adoptive immunotherapy and lentinan. Anticancer Res. 26, 4015-4018
  11. Georgopapadakou, N.H. 2001. Update on antifungal targeted to the cell wall: focus on $\beta$-1,3-glucan synthesis inhibitors. Exp. Opin. Invest. Drugs 10, 269-280 https://doi.org/10.1517/13543784.10.2.269
  12. Hamada, N. and Y. Tsujisaka. 1983. The structure of carbohydrate moiety of an acidic polysaccharide produced by Aureobasidium sp. K-1. Agric. Biol. Chem. 47, 1167-1172 https://doi.org/10.1271/bbb1961.47.1167
  13. Kim, S.Y., H.J. Song, Y.Y. Lee, K.H. Cho, and Y.K. Roh. 2006. Biomedical issues of dietary fiber $\beta$-glucan. J. Korean Med. Sci. 21, 781-789 https://doi.org/10.3346/jkms.2006.21.5.781
  14. Kim, Y.W., K.H. Kim, H.J. Choi, and D.S. Lee. 2005. Anti-diabetic activity of B-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol. Lett. 27, 483-487 https://doi.org/10.1007/s10529-005-2225-8
  15. Kim, Y.W., K.H. Kim, H.J. Choi, and D.S. Lee. 2005. Anti-diabetic activity of B-glucans and their enzymatically hydrolyzed oligosaccharides from Agaricus blazei. Biotechnol. Lett. 27, 483-487 https://doi.org/10.1007/s10529-005-2225-8
  16. Kogan, G., M. Pajtinka, M. Babincova, E. Miadokova, P. Rauko, D. Slamenova, and T.A. Korolenkova. 2008. Yeast cell wall polysaccharides as antioxidants: can they fight cancer?. Neoplasma 55, 387-393
  17. Navarini, L., J. Bella, A. Flaibani, R. Gilli, and V. Rizza. 1996. Structural characterization and solution properties of an acidic branched $\beta$-(1→3)-D-glucan from Aureobasidium pullulans. Int. J. Biomolecules 19, 157-163 https://doi.org/10.1016/0141-8130(96)01121-X
  18. Ohno, N., M. Furukawa, N.N. Miura, Y. Adachi, M. Motoi, and T. Yadomae. 2001. Antitumor $\beta$-glucan from the cultured fruit body of Agaricus blazei. Biol. Pharm. Bull. 24, 820-828 https://doi.org/10.1248/bpb.24.820
  19. Reis, R.A., C.A. Tischer, P.A. Gorin, and M. Iacomini. 2002. A new pullulan and a branched (1→3)-, (1→6)-linked $\beta$-glucan from the lichenised ascomycete Teloschites flavicans. FEMS Microbiol. Lett. 210, 1-5 https://doi.org/10.1016/S0378-1097(02)00554-2
  20. Sakai, T., Y. Yamashita, T. Maekawa, K. Mikami, S. Hoshino, and T. Shirakusa. 2008. Immunochemotherapy with PSK and fluoropyrimidines improves long-term prognosis for curatively resected colorectal cancer. Cancer Biother. Radiopharm. 23, 461-467 https://doi.org/10.1089/cbr.2008.0484
  21. Singh, P.P., R.L. Whistler, R. Tokuzen, and W. Nakahara. 1974. Scleroglucan, an antitumor polysaccharide from Sclerotium glucanicium. Carbohydr. Res. 37, 245-247 https://doi.org/10.1016/S0008-6215(00)87078-0
  22. Sullivan, R., J.E. Smith, and N.J. Rowan. 2006. Medicinal mushrooms and cancer therapy: translating a traditional practice into Western medicine. Perspect Biol. Med. 49, 159-170 https://doi.org/10.1353/pbm.2006.0034
  23. Wasser, S.P. 2002. Medical mushrooms as a source of antitumor and immunomodulating polysaccharides. Appl. Microbiol. Biotechnol. 60, 256-274 https://doi.org/10.1007/s00253-002-1076-7
  24. Zhang, P., L. Zhang, and S. Cheng. 1999. Chemical structure and molecular weight of $\alpha$-(1→3)-D-glucan. Biosci. Biotechnol. Biochem. 63, 1197-1202 https://doi.org/10.1271/bbb.63.1197
  25. Zhang, X., L. Zhang, and X. Xu. 2004. Morphologies and conformation of lentinan in aqueous NaOH solution. Biopolymers 75, 187-195 https://doi.org/10.1002/bip.20112
  26. Zhang, X., X. Li, X. Xu, and F. Zeng. 2005. Correlation between antitumor activity, molecular weight, and conformation of lentinan. Carbohydr. Res. 340, 1515-1521 https://doi.org/10.1016/j.carres.2005.02.032