• Title/Summary/Keyword: Hydrogen Potential

Search Result 916, Processing Time 0.033 seconds

Role of Diazotrophic Bacteria in Biological Nitrogen Fixation and Plant Growth Improvement

  • Shin, Wansik;Islam, Rashedul;Benson, Abitha;Joe, Manoharan Melvin;Kim, Kiyoon;Gopal, Selvakumar;Samaddar, Sandipan;Banerjee, Somak;Sa, Tongmin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.1
    • /
    • pp.17-29
    • /
    • 2016
  • Though there is an abundant supply of nitrogen in the atmosphere, it cannot be used directly by the biological systems since it has to be combined with the element hydrogen before their incorporation. This process of nitrogen fixation ($N_2$-fixation) may be accomplished either chemically or biologically. Between the two elements, biological nitrogen fixation (BNF) is a microbiological process that converts atmospheric di-nitrogen ($N_2$) into plant-usable form. In this review, the genetics and mechanism of nitrogen fixation including genes responsible for it, their types and role in BNF are discussed in detail. Nitrogen fixation in the different agricultural systems using different methods is discussed to understand the actual rather than the potential $N_2$-fixation procedure. The mechanism by which the diazotrophic bacteria improve plant growth apart from nitrogen fixation such as inhibition of plant ethylene synthesis, improvement of nutrient uptake, stress tolerance enhancement, solubilization of inorganic phosphate and mineralization of organic phosphate is also discussed. Role of diazotrophic bacteria in the enhancement of nitrogen fixation is also dealt with suitable examples. This mini review attempts to address the importance of diazotrophic bacteria in nitrogen fixation and plant growth improvement.

Electrodeposition of Silicon in Ionic Liquid of [bmpy]$Tf_2N$

  • Park, Je-Sik;Lee, Cheol-Gyeong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.30.1-30.1
    • /
    • 2011
  • Silicon is one of useful materials in various industry such as semiconductor, solar cell, and secondary battery. The metallic silicon produces generally melting process for ingot type or chemical vapor deposition (CVD) for thin film type. However, these methods have disadvantages of high cost, complicated process, and consumption of much energy. Electrodeposition has been known as a powerful synthesis method for obtaining metallic species by relatively simple operation with current and voltage control. Unfortunately, the electrodeposition of the silicon is impossible in aqueous electrolyte solution due to its low oxidation-reduction equilibrium potential. Ionic liquids are simply defined as ionic melts with a melting point below $100^{\circ}C$. Characteristics of the ionic liquids are high ionic conductivities, low vapour pressures, chemical stability, and wide electrochemical windows. The ionic liquids enable the electrochemically active elements, such as silicon, titanium, and aluminum, to be reduced to their metallic states without vigorous hydrogen gas evolution. In this study, the electrodeposion of silicon has been investigated in ionic liquid of 1-butyl-3-methylpyrolidinium bis (trifluoromethylsulfonyl) imide ([bmpy]$Tf_2N$) saturated with $SiCl_4$ at room temperature. Also, the effect of electrode materials on the electrodeposition and morphological characteristics of the silicon electrodeposited were analyzed The silicon electrodeposited on gold substrate was composed of the metallic Si with single crystalline size between 100~200nm. The silicon content by XPS analysis was detected in 31.3 wt% and the others were oxygen, gold, and carbon. The oxygen was detected much in edge area of th electrode due to $SiO_2$ from a partial oxidation of the metallic Si.

  • PDF

Preventive Effects of Lycopene-Enriched Tomato Wine against Oxidative Stress in High Fat Diet-Fed Rats

  • Kim, A-Young;Jeon, Seon-Min;Jeong, Yong-Jin;Park, Yong-Bok;Jung, Un-Ju;Choi, Myung-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.2
    • /
    • pp.95-103
    • /
    • 2011
  • This study was performed to investigate the antioxidant mechanism of tomato wine with varying lycopene content in rats fed a high fat diet (HFD). Male Sprague-Dawley rats were randomly divided into five groups (n=10 per group) and fed an HFD (35% of total energy from fat) plus ethanol (7.2% of total energy from alcohol), tomato wine with varying lycopene content (0.425 mg%, 1.140 mg% or 2.045 mg% lycopene) or an isocaloric control diet for 6 weeks. Mice fed HFD plus ethanol significantly increased erythrocyte hydrogen peroxide and thiobarbituric acid reactive substances (TBARS) levels with increases in activities of erythrocyte antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) compared to pair-fed rats. Supplementation of tomato wine with varying lycopene content decreased ethanol-mediated increases of erythrocyte lipid peroxidation and antioxidant enzyme activities in HFD-fed rats, and tomato wine with higher lycopene appeared to be more effective. Tomato wine also dose-dependently lowered TBARS levels with decreased pro-oxidant enzyme, xanthine oxidase (XOD) activity in plasma of HFD-fed rats. In contrast to erythrocytes, the inhibitory effects of tomato wine on hepatic lipid peroxidation were linked to increased hepatic antioxidant enzymes (SOD and CAT) and alcohol metabolizing enzyme (alcohol dehydrogenase and aldehyde dehydrogenase) activities. There were no significant differences in hepatic XOD and cytochrome P450-2E1 activities among the groups. Together, our data suggest that tomato wine fortified with lycopene has the potential to protect against ethanol-induced oxidative stress via regulation of antioxidant or pro-oxidant enzymes and alcohol metabolizing enzyme activities in plasma, erythrocyte and liver.

Antioxidant activities of Erythrina stricta Roxb.using various in vitro and ex vivo models

  • AsokKumar, K;UmaMaheswari, M;Sivashanmugam, AT;SubhadraDevi, V;Subhashini, N;Ravi, TK
    • Advances in Traditional Medicine
    • /
    • v.8 no.3
    • /
    • pp.266-278
    • /
    • 2008
  • Erythrina stricta, a deciduous tree widely used traditionally in indigenous system of medicine for various ailments such as rheumatism, fever, leprosy, epilepsy etc. The leaves of Erythrina stricta was extracted with ethanol (70%) and used for the evaluation of various in vitro antioxidant assays which includes H - donor activity, nitric oxide scavenging, superoxide anion scavenging, reducing ability, hydroxyl radical, hydrogen peroxide scavenging, total phenolic content, total flavonoid content, total antioxidant activity by thiocyanate and phosphomolybdenum method, metal chelating, $\beta$-carotene bleaching, total peroxy radical assays. The pro-oxidant activity was measured using bleomycin-dependent DNA damage. Ex vivo models like lipid peroxidation and erythrocyte haemolysis were also used to study the antioxidant property of the extract. The various antioxidant activities were compared with suitable standard antioxidants such as ascorbic acid, butylated hydroxyl toluene, $\alpha$-tocopherol, curcumin, quercetin and Trolox. The generation of free radicals viz. $O_2^{{\cdot}-}$, $OH^{\cdot}$, $H_2O_2$, $NO^{\cdot}$ and peroxyl radicals were effectively scavenged by the ethanolic extract of Erythrina stricta. In all the methods, the extract offered strong antioxidant activity in a concentration dependent manner. The total phenolic content, flavonoid content and total antioxidant activity in Erythrina stricta were determined as microgram (g) pyrocatechol, quercetin and $\alpha$-tocopherol equivalent/mg respectively. The extract did not exhibit any prooxidant activity when compared with ascorbic acid. The results obtained in the present study clearly indicates that Erythrina stricta scavenges free radicals and reduces lipid peroxidation, ameliorating the damage imposed by oxidative stress in different disease conditions and serve as a potential source of natural antioxidant.

The Polyphenol Chlorogenic Acid Attenuates UVB-mediated Oxidative Stress in Human HaCaT Keratinocytes

  • Cha, Ji Won;Piao, Mei Jing;Kim, Ki Cheon;Yao, Cheng Wen;Zheng, Jian;Kim, Seong Min;Hyun, Chang Lim;Ahn, Yong Seok;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.136-142
    • /
    • 2014
  • We investigated the protective effects of chlorogenic acid (CGA), a polyphenol compound, on oxidative damage induced by UVB exposure on human HaCaT cells. In a cell-free system, CGA scavenged 1,1-diphenyl-2-picrylhydrazyl radicals, superoxide anions, hydroxyl radicals, and intracellular reactive oxygen species (ROS) generated by hydrogen peroxide and ultraviolet B (UVB). Furthermore, CGA absorbed electromagnetic radiation in the UVB range (280-320 nm). UVB exposure resulted in damage to cellular DNA, as demonstrated in a comet assay; pre-treatment of cells with CGA prior to UVB irradiation prevented DNA damage and increased cell viability. Furthermore, CGA pre-treatment prevented or ameliorated apoptosis-related changes in UVB-exposed cells, including the formation of apoptotic bodies, disruption of mitochondrial membrane potential, and alterations in the levels of the apoptosis-related proteins Bcl-2, Bax, and caspase-3. Our findings suggest that CGA protects cells from oxidative stress induced by UVB radiation.

Newly Synthesized Silicon Quantum Dot-Polystyrene Nanocomposite Having Thermally Robust Positive Charge Trapping

  • Dung, Mai Xuan;Choi, Jin-Kyu;Jeong, Hyun-Dam
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.221-221
    • /
    • 2013
  • Striving to replace the well known silicon nanocrystals embedded in oxides with solution-processable charge-trapping materials has been debated because of large scale and cost effective demands. Herein, a silicon quantum dot-polystyrene nanocomposite (SiQD-PS NC) was synthesized by postfunctionalization of hydrogen-terminated silicon quantum dots (H-SiQDs) with styrene using a thermally induced surface-initiated polymerization approach. The NC contains two miscible components: PS and SiQD@PS, which respectively are polystyrene and polystyrene chains-capped SiQDs. Spin-coated films of the nanocomposite on various substrate were thermally annealed at different temperatures and subsequently used to construct metal-insulator-semiconductor (MIS) devices and thin film field effect transistors (TFTs) having a structure p-$S^{++}$/$SiO_2$/NC/pentacene/Au source-drain. C-V curves obtained from the MIS devices exhibit a well-defined counterclockwise hysteresis with negative fat band shifts, which was stable over a wide range of curing temperature ($50{\sim}250^{\circ}C$. The positive charge trapping capability of the NC originates from the spherical potential well structure of the SiQD@PS component while the strong chemical bonding between SiQDs and polystyrene chains accounts for the thermal stability of the charge trapping property. The transfer curve of the transistor was controllably shifted to the negative direction by chaining applied gate voltage. Thereby, this newly synthesized and solution processable SiQD-PS nanocomposite is applicable as charge trapping materials for TFT based memory devices.

  • PDF

Phenolic Profiles of Hardy Kiwifruits and Their Neuroprotective Effects on PC-12 and SH-SY5Y Cells against Oxidative Stress

  • Jeong, Ha-Ram;Kim, Kwan Joong;Lee, Sang Gil;Cho, Hye Sung;Cho, Youn-Sup;Kim, Dae-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.912-919
    • /
    • 2020
  • Hardy kiwifruits (Actinidia arguta Planch.) have high amounts of antioxidants, including ascorbic acid (vitamin C) and phenolics. The anti-cholinesterase activity and neuroprotective effects of three different cultivars of hardy kiwifruits, cv. Mansu (A. arguta × A. deliciosa), cv. Haeyeon (A. arguta), and cv. Chiak (A. arguta), on PC-12 and SH-SY5Y cells were evaluated. Extraction of phenolics and vitamin C was carried out using 80% (v/v) aqueous ethanol and metaphosphoric acid assisted with homogenization, respectively. Hardy kiwifruit of cv. Mansu showed higher total phenolic, total flavonoid, and vitamin C contents and antioxidant capacity compared to the other two cultivars of hardy kiwifruits, cv. Haeyeon and cv. Chiak. Analysis of high-performance liquid chromatography results revealed the presence of procyanidin B2, (-)-epicatechin, neochlorogenic acid, cryptochlorogenic acid, rutin, hyperoside, isoquercitrin, and astragalin in hardy kiwifruits. The three cultivars of hardy kiwifruits had a wide range of vitamin C content of 55.2-130.0 mg/100 g fresh weight. All three cultivars of hardy kiwifruits had protective effects on neuronal PC-12 and SH-SY5Y cells exposed to hydrogen peroxide by increasing cell viability and reducing intracellular oxidative stress. Furthermore, the hardy kiwifruits inhibited acetylcholinesterase and butyrylcholinesterase. Collectively, these results suggest that hardy kiwifruits rich in antioxidants like phenolics and vitamin C have good potential as functional materials in neuroprotective applications.

Biological Activities of Scolopendrid Pharmacopuncture (수순(水醇)추출법으로 조제된 오공 약침액의 생리활성 효과)

  • Kim, Sung-Chul;Seo, Geun-Young;Lee, Sung-Won;Park, Sung-Joo;Kim, Jae-Hyo;Ahn, Seong-Hun;Hwang, Sung-Yeoun
    • Journal of Pharmacopuncture
    • /
    • v.13 no.3
    • /
    • pp.5-13
    • /
    • 2010
  • Reactive Oxygen Species(ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical increases with age, the reactive oxygen species(ROS) such as hydrogen peroxide($H_2O_2$), nitric oxide(NO). Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. Our reserch objective was to examine the in vitro biological activity of Scolopendrid Pharmacopuncture, including the total poly-phenol content, DPPH radical scavenging, ABTS radical scavenging, Superoxide dismutase(SOD)-like activity, Nitrite scavenging ability. The total poly-phenol contents of Scolopendrid Pharmacopuncture was 35.859mg/L. Elctron donation ability on DPPH was 36.82%. The 2,2'-azinobis-3-ehtlbezothiazoline-6-sulfonic acid radical decolorization (ABTS) was 84.7%. The superoxide dismutase (SOD)-like activities of Scolopendrid Pharmacopuncture was 44.33%. The nitrite scavenging effects were pH dependent, and were highest at pH 1.5(45.2%) and lowest at pH 6.0(11.3%). We conclude that Scolopendrid Pharmacopuncture may be useful as potential sources of antioxidant.

Development and Characterization of High Quality Salted Mackerel Using Enzyme Hydrolysates of Ecklonia cava (감태 효소 가소분해물을 이용한 고품질 간고등어의 개발 및 특성)

  • Yoon, Min-Seok;Kim, Hyung-Jun;Park, Kwon-Hyun;Shin, Joon-Ho;Lee, Jeong-Suk;Jeon, You-Jin;Son, Hee-Jin;Heu, Min-Soo;Kim, Jin-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.42 no.6
    • /
    • pp.545-554
    • /
    • 2009
  • This study was conducted to develop and characterize of a high quality salted mackerel using enzymatic extracts of Ecklonia cava (EEC). In this study, potential antioxidative properties of EEC were evaluated by DPPH free radical scavenging activity, hydrogen peroxide scavenging activity, peroxide value, and fatty acid composition, and the antimicrobial properties were also measured by analysis for volatile basic nitrogen, pH, viable cells, Eschericia coli and biogenic amine. Compared to EEC-untreated salted mackerel, the salted mackerel with EEC was superior in antioxidative properties, while was negligible in the difference of antimicrobial properties. These results suggested that the high quality salted mackerel with antioxidative activity could be developed by treatment of EEC.

Mechanistic insights of metal acetylacetonate-aided dehydrocoupling of liquid-state ammonia borane NH3BH3

  • Pereza, Manon;Mieleb, Philippe;Demirci, Umit B.
    • Advances in Energy Research
    • /
    • v.4 no.2
    • /
    • pp.177-187
    • /
    • 2016
  • Ammonia borane $NH_3BH_3$ solubilized in organic solvent is a potential liquid-state chemical hydrogen storage material. In this study, metal acetylacetonates like $Fe(O_2C_5H_7)_3$, $Co(O_2C_5H_7)_2$, $Ni(O_2C_5H_7)_2$, $Pd(O_2C_5H_7)_2$, $Pt(O_2C_5H_7)_2$ and $Ru(O_2C_5H_7)_3$ are considered for assisting dehydrocoupling of ammonia borane in diglyme (0.135 M) at $50^{\circ}C$. The molar ratio between ammonia borane and metal acetylacetonate is fixed at 100. A protocol for the separation of the soluble and insoluble fractions present in the slurry is proposed; it consists in using acetonitrile to make the precipitation of metal-based compounds easier and to solubilize boron-based intermediates/products. The nature of the metal does not affect the dehydrocoupling mechanisms, the $^{11}B\{^1H\}$ NMR spectra showing the formation of the same reaction intermediates. The aforementioned metal acetylacetonates do mainly have effect on the kinetics of dehydrocoupling. Dehydrocoupling takes place heterogeneously and dehydrogenation of ammonia borane in these conditions leads to the formation of polyborazylene via intermediates like e.g., B-(cyclodiborazanyl) amine-borane and borazine. Our main results are reported and discussed herein.