DOI QR코드

DOI QR Code

Mechanistic insights of metal acetylacetonate-aided dehydrocoupling of liquid-state ammonia borane NH3BH3

  • Pereza, Manon (IEM (Institut Europeen des Membranes), UMR5635 (CNRS, ENSCM, UM), Universite de Montpellier) ;
  • Mieleb, Philippe (IEM (Institut Europeen des Membranes), UMR5635 (CNRS, ENSCM, UM), Universite de Montpellier) ;
  • Demirci, Umit B. (IEM (Institut Europeen des Membranes), UMR5635 (CNRS, ENSCM, UM), Universite de Montpellier)
  • Received : 2015.12.12
  • Accepted : 2016.04.06
  • Published : 2016.06.25

Abstract

Ammonia borane $NH_3BH_3$ solubilized in organic solvent is a potential liquid-state chemical hydrogen storage material. In this study, metal acetylacetonates like $Fe(O_2C_5H_7)_3$, $Co(O_2C_5H_7)_2$, $Ni(O_2C_5H_7)_2$, $Pd(O_2C_5H_7)_2$, $Pt(O_2C_5H_7)_2$ and $Ru(O_2C_5H_7)_3$ are considered for assisting dehydrocoupling of ammonia borane in diglyme (0.135 M) at $50^{\circ}C$. The molar ratio between ammonia borane and metal acetylacetonate is fixed at 100. A protocol for the separation of the soluble and insoluble fractions present in the slurry is proposed; it consists in using acetonitrile to make the precipitation of metal-based compounds easier and to solubilize boron-based intermediates/products. The nature of the metal does not affect the dehydrocoupling mechanisms, the $^{11}B\{^1H\}$ NMR spectra showing the formation of the same reaction intermediates. The aforementioned metal acetylacetonates do mainly have effect on the kinetics of dehydrocoupling. Dehydrocoupling takes place heterogeneously and dehydrogenation of ammonia borane in these conditions leads to the formation of polyborazylene via intermediates like e.g., B-(cyclodiborazanyl) amine-borane and borazine. Our main results are reported and discussed herein.

Keywords

Acknowledgement

Supported by : CNRS (Centre National de la Recherche Scientifique)

References

  1. Al-Kukhun, A., Hwang, H.T. and Varma, A. (2013), "Mechanistic studies of ammonia borane dehydrogenation", Int. J. Hydrogen Energy, 38, 169-179. https://doi.org/10.1016/j.ijhydene.2012.09.161
  2. Baker, R.T., Gordon, J.C., Hamilton, C.W., Henson, N.J., Lin, P.H., Maguire, S., Muriguesu, M., Scott, B.L. and Smythe, N.C. (2012), "Iron complex-catalyzed ammonia-borane dehydrogenation. A potential route toward BN-containing polymer motifs using earth-abundant metal catalysts", J. Am. Chem. Soc., 134, 5598-5609. https://doi.org/10.1021/ja210542r
  3. Crabtree, R.H., Siegbahn, P.E.M., Eisenstein, O., Rheinhold, A.L. and Koetzle, T.F. (1996), "A new intermolecular interaction: unconventional hydrogen bonds with element-hydride bonds as proton acceptor", Acc. Chem. Res., 29, 348-354. https://doi.org/10.1021/ar950150s
  4. Duman, S. and Ozkar, S. (2013), "Hydrogen generation from the dehydrogenation of ammonia-borane in the presence of ruthenium (III) acetylacetonate forming a homogeneous catalyst", Int. J. Hydrogen Energy, 38, 180-187. https://doi.org/10.1016/j.ijhydene.2012.10.041
  5. Erickson, K.A., Stelmach, J.P.W., Mucha, N.T. and Waterman, R. (2015), "Zirconium-catalyzed amine borane dehydrocoupling and transfer hydrogenation", Organometall., 34, 4693-4699. https://doi.org/10.1021/acs.organomet.5b00415
  6. Fazen, P.J., Remsen, E.E., Beck, J.S., Carroll, P.J., McGhie, A.R. and Sneddon, L.G. (1995), "Synthesis, properties and ceramic conversion reactions of polyborazylene. A high-yield polymeric precursor to boron nitride", Chem. Mater., 7, 1972-1956.
  7. Gluer, A., Forster, M., Celinski, V.R., der Gunne, J.S., Holthausen, M.C. and Schneider, S. (2015), "Highly active iron catalyst for ammonia borane dehydrocoupling at room temperature", ACS Catal., 5, 7214-7217. https://doi.org/10.1021/acscatal.5b02406
  8. Hu, M.G., Geanangel, R.A. and Wendlandt, W.W. (1978), "The thermal decomposition of ammonia borane", Thermochim. Acta, 23, 249-255. https://doi.org/10.1016/0040-6031(78)85066-7
  9. Kalviri, H.A., Gartner, F., Ye, G., Korobkov, I. and Baker, R.T. (2015), "Probing the second dehydrogenation step in ammonia-borane dehydrocoupling: characterization and reactivity of the key intermediate, B-(cyclotriborazanyl)amine-borane", Chem. Sci., 6, 618-624. https://doi.org/10.1039/C4SC02710H
  10. Kostka, J.F., Schellenberg, R., Baitalow, F., Smolinka, T. and Mertens, F. (2012), "Concentration-dependent dehydrogenation of ammonia-borane/triglyme mixtures", Eur. J. Inorg. Chem., 2012, 49-54. https://doi.org/10.1002/ejic.201100795
  11. Li, H., Yang, Q., Chen, X. and Shore, S.G. (2014), "Ammonia borane, past as prolog", J. Organomet. Chem., 751, 60-66. https://doi.org/10.1016/j.jorganchem.2013.08.044
  12. Liu, Z. and Marder, T.B. (2008), "B-N versus C-C: how similar are they?", Angew. Chem. Int. Ed., 47, 242-244. https://doi.org/10.1002/anie.200703535
  13. Moussa, G., Moury, R., Demirci, U.B., Sener, T. and Miele, P. (2013), "Boron-based hydrides for chemical hydrogen storage", Int. J. Energy Res., 37, 825-842. https://doi.org/10.1002/er.3027
  14. Palke, W.E. (1972), "Calculation of the internal rotation barrier and its derivative in BH3NH3", J. Chem. Phys., 56, 5308-5312. https://doi.org/10.1063/1.1677036
  15. Shaw, W.J., Linehan, J.C., Szymczak, N., Heldebrant, N.J., Yonker, C., Camaioni, D.M., Baker, R.T. and Autrey, T. (2008), "In situ multinuclear NMR spectroscopic studies of the thermal decomposition of ammonia borane in solution", Angew. Chem. Int. Ed., 47, 7493-7496. https://doi.org/10.1002/anie.200802100
  16. Summerscales, O.T. and Gordon, J.C. (2013), "Regeneration of ammonia borane from spent fuel", Dalton Trans., 42, 10075-10084. https://doi.org/10.1039/c3dt50475a
  17. Sutton, A.D., Burrell, A.K., Dixon, D.A., Garner III, E.B., Gordon, J.C., Nakagawa, T., Ott, K.C., Robinson, J.P. and Vasiliu, M. (2011), "Regeneration of ammonia borane spent fuel by direct reaction with hydrazine and liquid ammonia", Science, 331, 1426-1429. https://doi.org/10.1126/science.1199003
  18. Toche, F., Chiriac, R., Demirci, U.B. and Miele, P. (2012), "Ammonia borane thermolytic decomposition in the presence of metal (II) chlorides", Int. J. Hydrogen Energy, 37, 6749-6755. https://doi.org/10.1016/j.ijhydene.2012.01.037
  19. Wang, J.S. and Geanangel, R.A. (1988), "$^{11}B$ NMR studies of the thermal decomposition of ammonia-borane in solution", Inorg. Chim. Acta, 148, 185-190. https://doi.org/10.1016/S0020-1693(00)87499-X
  20. Wang, P. (2012), "Solid-state thermolysis of ammonia borane and related materials for high-capacity hydrogen storage", Dalton Trans., 41, 4296-4302. https://doi.org/10.1039/c2dt11778a
  21. Zhao, Q., Li, J., Hamilton, E.J.M. and Chen, X. (2015), "The continuing story of the diammoniate of diborane", J. Organometall. Chem., 798, 24-29. https://doi.org/10.1016/j.jorganchem.2015.05.027

Cited by

  1. Boron-enriched advanced energy materials vol.471, 2018, https://doi.org/10.1016/j.ica.2017.11.037
  2. Ammonia Borane Nanospheres for Hydrogen Storage vol.2, pp.2, 2016, https://doi.org/10.1021/acsanm.9b00176