• 제목/요약/키워드: Hydrogen Fuel Vehicle

검색결과 262건 처리시간 0.128초

연료전지 내구성능 향상을 위한 공기차단밸브 개발 (Development of Air Cutoff Valve for Improving Durability of Fuel Cell)

  • 박정희;이창하;권혁률;김치명;최규성
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.49-55
    • /
    • 2015
  • In this study, among in various scenarios of the duration degradation of the fuel cell, countermeasures for the cathode carbon carrier oxidation and the deactivation of catalyst by hydrogen / air interface formation have been studied. so the system was applied to the air cutoff valve. In terms of the component, the cold start performance, electrical stability, the airtight performance were mainly designed and their performance was confirmed. And in terms of the system, the air electrode flow is blocked off, so the oxygen concentration drops when system is powered off, As a result, By reducing unit cell voltage which affect the durability of the fuel cell reached up to 0.8V, the improved durability of the fuel cell was confirmed.

유한요소법을 이용한 FCEV용 체크밸브의 열간 단조 공정 해석 (Analysis of Hot Forging Process of Check Valve in FCEV using Finite Element Method)

  • 정동환;송현정;이창훈;이승범;김지훈;손근주;조해용
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.100-107
    • /
    • 2021
  • The use of new and renewable energy is essential to solve the problem of increasing fossil fuel use due to industrial development. The paradigm of the automobile industry has changed due to the strengthening of environmental regulations in developed countries, and the development of eco-friendly cars is underway. Fuel cell electric vehicles (FCEVs), which use hydrogen as fuel, require strict standards for fuel-related components. In particular, check valves for FCEV control high-pressure hydrogen and thus, must be sufficiently strong for the challenging environment caused by high-pressure hydrogen. Therefore, this study used DEFORM 3D, a regular finite element analysis program, to check the moldability of check valves for FCEV, design the process, verify reliability through single streamline analysis, tensile tests, and ANSYS simulations, and identify suitable materials for the high-pressure hydrogen environment.

국내 LPG 충전소 내 수소 융·복합충전소 구축 가능 부지 연구 (A Study on Site to Build Hydrogen Multi Energy Filling Station in Domestic LPG Station)

  • 박지원;허윤실;강승규
    • 한국수소및신에너지학회논문집
    • /
    • 제28권6호
    • /
    • pp.642-648
    • /
    • 2017
  • The use of fossil is causing enviromental all over the world. So hydrogen energy is attracting attention as one of the alternative. The government announced that 30% of the air pollution is because of the Internal Combustion Engine Vehicle. In addition, they plans to reduce Internal Combustion Engine Vehicles by 2030 and increase (electric vehicles, EV) or (fuel cell vehicle, FCV). The FCV is evaluated as a next-generation green car because it has a long driving distance and short charging time. However, the hydrogen industry is not able to expand due to the lack of refueling infrastrucutre. This paper predicts the site of hydrogen refueling stations for the expansion of the hydrogen industry and proposes a method to supply hydrogen multi energy filling stations.

개질 수소 정제용 PSA 공정을 위한 CO 흡착제의 성능 평가 (The Evaluation of CO Adsorbents Used in PSA Process for the Purification of Reformed Hydrogen)

  • 박진남
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.628-635
    • /
    • 2016
  • Natural gas reformed hydrogen is used as a fuel of fuel cell vehicle, PSA process is used for the purification of reformed hydrogen. In this study, the performance of CO adsorbent in PSA process was evaluated. Zeolite adsorbents used in the commercial PSA process is used. The physical and chemical properties of adsorbents were characterized using BET apparatus, XRD, and FE-SEM. The breakthrough apparatus modified from GC was used for the CO breakthrough experiment, the quantitative analysis of CO adsorption capacity was performed using CO breakthrough curve. Zeolite 10X and 13X showed superior CO adsorption capacity than activated alumina. The CO adsorption capacity of zeolite 10X is more than twice of zeolite 13X even the BET surface area is low. It seems that the presence of $Ca^{2+}$ cation in zeolite 10X is beneficial to the adsorption of CO.

운전 조건에 따른 PEMFC 스택 열 관리 (The Heat Management of PEM Fuel Cell Stack)

  • 손익제;이종현;남기영;고재준;안병기
    • 한국수소및신에너지학회논문집
    • /
    • 제21권3호
    • /
    • pp.184-192
    • /
    • 2010
  • PEM fuel cell produces electric power, water and heat by the electrochemical reaction of hydrogen and oxygen. The heating value is dependent on the molar enthalpy of vaporization of product water and the performance loss. In this paper, the heating value of fuel cell stack has been studied under various stack operating temperatures to achieve more efficient heat management. A technology using the molar enthalpy of vaporization of product water is suggested to reduce heat-up time during start-up of a fuel cell vehicle.

수소충전소의 연료 계량 방법에 따른 계량 오차가 발생하는 원인 고찰 (The Study to Find Causes for Measuring Differences of Hydrogen Fillings in Hydrogen Refueling Station)

  • 이택홍;강병우;이은웅;정진배;홍석진
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.32-40
    • /
    • 2018
  • There has been an measuring errors between state of charge (SOC; kg) value and mass flow meter (MFM) value in dispenser for hydrogen refueling station. Finally, we observed average 15.5% weight difference between these two values and the MFM readings show a 15.5% higher readout of the SOC readings. Each car was charged with average 2.66 kg of hydrogen fuel during this period. In the initial charging of the day shows less measuring value than the final charging with the maximum 0.038 kg times number of filling. There is no effects of atmosphere temperature change for the hydrogen filled weight during one full year such as January's cold winters and August's hot summers.

연료전지 버스용 공기공급시스템 개발 (Development of Air Supply System for Fuel Cell Electric Bus)

  • 김우준;박창호;조경석;오창훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.561-564
    • /
    • 2007
  • FCEV uses electric energy which generated from the reaction between Hydrogen and Oxygen in fuel cell stack as driving force. As fossil fuels are exhausted, fuel cell is regarded as a potent substitute for next generation energy source, and thus, most of car-makers make every efforts to develop fuel cell electric vehicle (FCEV). In addition, fuel cell is also beneficial in aspect of environment, because only clean water is produced during chemical reaction process instead of harmful exhausted gas. Generally, Hydrogen is supplied from high-pressured fuel tank, and air blower (or compressor) supply Oxygen by pressurizing ambient air. Air blower which is driven by high speed motor consumes about $7{\sim}8$ % of energy generated from fuel cell stack. Therefore, the efficiency of an air blower is directly linked with the performance of FCEV. This study will present the development process of an air blower and its consisting parts respectively.

  • PDF

PEM 연료전지 자동차의 급기 시스템의 모델링 및 분석 (Modeling and Analysis of the Air Supply System for Vehicular PEM Fuel Cell)

  • 장현탁;강이석
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.236-246
    • /
    • 2003
  • This paper focuses on developing a model of a PEM fuel cell stack and to integrate it with realistic model of the air supply system for fuel cell vehicle application. The fuel cell system model is realistically and accurately simulated air supply operation and its effect on the system power and efficiency using simulation tool Matlab/Simulink. The Peak performance found at a pressure ratio of 3, and it give a 15mV increase per cell. The limit imposed is a minimum SR(Stoichiometric Ratio) of 2 at low fuel cell load and 2.5 at high fuel cell load.

국내 수소 수요현황 파악을 통한 원자력 수소의 공급 용량 예측 안 (Suggestion of nuclear hydrogen supply by analyzing status of domestic hydrogen demand)

  • 임미숙;방진환;오전근;윤영식
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.90-97
    • /
    • 2006
  • Hydrogen is used as a chemical feedstock in several important industrial processes, including oil refineries and petro-chemical production. But, nowadays hydrogen is focused as energy carrier on the rising of problems such as exhaustion of fossil fuel and environmental pollution. Thermochemical hydrogen production by nuclear energy has potential to efficiently produce large quantities of hydrogen without producing greenhouse gases, and research of nuclear hydrogen, therefore, has been worked with goal to demonstrate commercial production in 2020. The oil refineries and petro-chemical plant are very large, centralized producers and users of industrial hydrogen, and high-potential early market for hydrogen produced by nuclear energy. Therefore, it is essential to investigate and analyze for state of domestic hydrogen market focused on industrial users. Hydrogen market of petro-chemical industry as demand site was investigated and worked for demand forecast of hydrogen in 2020. Also we suggested possible supply plans of nuclear hydrogen considered regional characteristics and then it can be provided basis for determination of optimal capacity of nuclear hydrogen plant in 2020.