• Title/Summary/Keyword: Hydrogen Evolution Reaction

Search Result 150, Processing Time 0.025 seconds

Theoretical study of H2 evolution on N-doped monolayer graphene

  • Kim, Gye-Yeop;Han, Seung-U
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.485-487
    • /
    • 2014
  • Nitrogen이 도핑된 graphene에서의 hydrogen evolution에 대한 촉매효과에 대해서 연구를 진행하였다. Reaction free energy를 계산하기 위해서 많은 N-doped graphene 모델을 계산하였으며 pH 조건, silicon cathode의 영향 그리고 zero point energy의 효과를 고려하였다. Volcano plot에 의하면 "pyrol" like model과 N-doped armchair graphene model (aGNR-N1)이 좋은 촉매효과를 가짐을 밝혔다. 또한 free energy diagram을 통하여 "pyrol"과 "aGNR-N1"이 좋은 active site가 될 수 있음을 확인하였고 pH가 증가함에 따라 $H^+$의 에너지가 증가함에 따라 촉매 효과가 줄어듬을 확인하였다.

  • PDF

Ruthenium Complex Catalyzed Synthesis of 2-Substituted Benzoxazoles from o-Aminophenol and Alcohol with Spontaneous Hydrogen Evolution

  • Keun-Tae Huh;Sang Chul Shim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.449-452
    • /
    • 1993
  • o-Aminophenols react with alcohols in the presense of a catalytic amount of ruthenium catalyst at 180$^{\circ}C$ to give 2-substituted benzoxazole in good yield. The yields of 2-substituted benzoxazoles were affected by the yield of N-alkylation compound from o-aminophenol and alcohol as starting materials. During the reaction, a stoichiometric amount of hydrogen was spontaneously evolved into the gas phase.

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials (배터리 소재를 이용한 전이금속 화합물 기반 물 분해 촉매 개발)

  • Kim, Hyunah;Kang, Kisuk
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.416-426
    • /
    • 2018
  • Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.

The effect of Rh/Ce/Zr additives on the redox cycling of iron oxide for hydrogen storage (산화철의 환원-산화 반응을 이용한 수소저장에 미치는 Rh/Ce/Zr의 효과)

  • Lee, Dong-Hee;Cha, Kwang-Seo;Park, Chu-Sik;Kang, Kung-Soo;Kim, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.49-52
    • /
    • 2007
  • We investigated hydrogen storage and production properties using redox system of iron oxide($Fe_{3}O_{4}$ + $4H_{2}$ ${\leftrightarrows}$ 3Fe + $4H_{2}O$) modified with rhodium, ceria and zirconia under atmospheric pressure. Reduction of iron oxide with hydrogen(hydrogen storage) and re-oxidation of reduced iron oxide with steam(hydrogen evolution) was carried out using a temperature programmed reaction(TPR) technique. On the temperature programmed studies, the effects of amounts of cerium and zirconium on the re-oxidation rate of partial reduced iron oxides were increased with increasing metal additives amount, but the rhodium amount showed little effect on the re-oxidation rate. On the thermal studies, the re-oxidation rates were enhanced with increasing temperature(300 $^{\circ}C$ < 350 $^{\circ}C$).

  • PDF

Optimization of fabrication and process conditions for highly uniform and durable cobalt oxide electrodes for anion exchange membrane water electrolysis (음이온 교환막 수전해 적용을 위한 고균일 고내구 코발트 산화물 전극의 제조 및 공정 조건 최적화)

  • Hoseok Lee;Shin-Woo Myeong;Jun-young Park;Eon-ju Park;Sungjun Heo;Nam-In Kim;Jae-hun Lee;Jae-hun Lee;Jae-Yeop Jeong;Song Jin;Jooyoung Lee;Sang Ho Lee;Chiho Kim;Sung Mook Choi
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.6
    • /
    • pp.412-419
    • /
    • 2023
  • Anion exchange membrane electrolysis is considered a promising next-generation hydrogen production technology that can produce low-cost, clean hydrogen. However, anion exchange membrane electrolysis technology is in its early stages of development and requires intensive research on electrodes, which are a key component of the catalyst-system interface. In this study, we optimized the pressure conditions of the hot-pressing process to manufacture cobalt oxide electrodes for the development of a high uniformity and high adhesion electrode production process for the oxygen evolution reaction. As the pressure increased, the reduction of pores within the electrode and increased densification of catalytic particles led to the formation of a uniform electrode surface. The cobalt oxide electrode optimized for pressure conditions exhibited improved catalytic activity and durability. The optimized electrode was used as the anode in an AEMWE single cell, exhibiting a current density of 1.53 A cm-2 at a cell voltage of 1.85 V. In a durability test conducted for 100 h at a constant current density of 500 mA cm-2, it demonstrated excellent durability with a low degradation rate of 15.9 mV kh-1, maintaining 99% of its initial performance.

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Synthesis and Characteristic of Ni/VSZ Cermet for High Temperature Electrolysis Prepared by Mechanical Alloying Method (Mechanical Alloying Method로 제조된 고온수전해용 Ni/YSZ cermet의 제조 및 특성)

  • Chae, Ui-Seok;Hong, Hyun-Sean;Choo, Soo-Tae
    • Journal of Hydrogen and New Energy
    • /
    • v.16 no.4
    • /
    • pp.372-378
    • /
    • 2005
  • Ni/YSZ ($Y_2O_3$-stabilized $ZrO_2$) composite powder for a cathode material in high temperature electrolysis(HTE) was synthesized by a mechanical alloying method with Ni and YSZ powder. Microstructure of the composite and cell thickness for HTE reaction has been analyzed with various techniques of XRD, SEM to investigate effects of fabrication conditions. Employing the composite material, furthermore, the unit cell for HTE has been studied to evolve hydrogen from water. XRD patterns showed that the composites after wet mechanical alloying were composed of respective nano-sized crystalline Ni and YSZ. While ethanol as additive for mechanical alloying increased to $20\;{\mu}m$ of average particle size of the composites, alpha-terpineol effectively decreased to sub-micro size of that. This study has been found out the evolution of hydrogen by HTE reaction employing the fabricated cathode material, showing 1.4 ml/min of $H_2$ generation rate as increasing $20\;{\mu}m$ of cathode thickness.

Characterization of NiO and Co3O4-Doped La(CoNi)O3 Perovskite Catalysts Synthesized from Excess Ni for Oxygen Reduction and Evolution Reaction in Alkaline Solution (과량의 니켈 첨가로 합성된 NiO와 Co3O4가 도핑된 La(CoNi)O3 페로브스 카이트의 알칼리용액에서 산소환원 및 발생반응 특성)

  • BO, LING;RIM, HYUNG-RYUL;LEE, HONG-KI;PARK, GYUNGSE;SHIM, JOONGPYO
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.1
    • /
    • pp.41-52
    • /
    • 2021
  • NiO and Co3O4-doped porous La(CoNi)O3 perovskite oxides were prepared from excess Ni addition by a hydrothermal method using porous silica template, and characterized as bifunctional catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) for Zn-air rechargeable batteries in alkaline solution. Excess Ni induced to form NiO and Co3O4 in La(CoNi)O3 particles. The NiO and Co3O4-doped porous La(CoNi)O3 showed high specific surface area, up to nine times of conventionally synthesized perovskite oxide, and abundant pore volume with similar structure. Extra added Ni was partially substituted for Co as B site of ABO3 perovskite structure and formed to NiO and Co3O4 which was highly dispersed in particles. Excess Ni in La(CoNi)O3 catalysts increased OER performance (259 mA/㎠ at 2.4 V) in alkaline solution, although the activities (211 mA/㎠ at 0.5 V) for ORR were not changed with the content of excess Ni. La(CoNi)O3 with excess Ni showed very stable cyclability and low capacity fading rate (0.38 & 0.07 ㎶/hour for ORR & OER) until 300 hours (~70 cycles) but more excess content of Ni in La(CoNi)O3 gave negative effect to cyclability.

Synthesis and Durability of Carbon-Supported Catalysts for PEMFC (내구성 향상을 위한 연료전지 촉매 개발)

  • YI, MI HYE;CHOI, JIN SUNG;RHO, BUMWOOK
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.318-323
    • /
    • 2015
  • For commercialization of fuel cell electric vehicles, one of the key objectives is to improve durability of MEA and electrocatalysts. Regarding electrocatalysts, the major issue is to reduce carbon corrosion and dissolution of Pt caused by harsh conditions, for example, SU/SD (Start-up/Shut-down). In this research, OER (Oxygen Evolution Reaction) catalyst has been developed improvement of durability. A modified polyol process is developed by controlling the pH of the solvent to synthesize the PtIr nanocatalysts on carbon supports. Each performance of the MEAs applying PtIr and Pt are equivalent because PtIrnanocatalysts have both ORR and OER activity. Breadboard test for catalyst durability in harsh conditions and high potentialsis found that the MEA applying PtIrnanocatalysts durability is improved more than the MEA applying Pt nanocatalysts.

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes (몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구)

  • Oh, Kiseok;Yoo, Hyeonseok;Lee, Gibaek;Choi, Jinsub
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.6
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.