Browse > Article
http://dx.doi.org/10.31613/ceramist.2018.21.4.09

Developing efficient transition metal-based water splitting catalyst using rechargeable battery materials  

Kim, Hyunah (Department of Materials Science and Engineering, Seoul National University)
Kang, Kisuk (Department of Materials Science and Engineering, Seoul National University)
Publication Information
Ceramist / v.21, no.4, 2018 , pp. 416-426 More about this Journal
Abstract
Water splitting is regarded as one of the most environmentally benign routes for hydrogen production. Nevertheless, the low energy efficiency to produce the hydrogen has been a critical bottleneck, which is attributable to the multi-electron and multi-step reactions during water splitting reaction. In this respect, the development of efficient, durable, and inexpensive catalysts that can promote the reaction is indispensable. Extensive searching for new catalysts has been carried out for past decades, identifying several promising catalysts. Recently, researchers have found that conventional battery materials; particularly high-voltage intercalation-based cathode materials, could exhibit remarkable performance in catalyzing the water splitting process. One of the unique capabilities in this class of materials is that the valency state of metals and the atomic arrangement of the structure can be easily tailored, based on simple intercalation chemistry. Moreover, taking advantage of the rich prior knowledge on the intercalation compounds can offer the unexplored path to identify new water splitting catalysts.
Keywords
Water Splitting; Electrolysis; Rechargeable Battery; Catalyst; Oxygen Evolution Reaction;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H.-Y. Su, Y. Gorlin, I. C. Man, F. Calle-Vallejo, J. K. Norskov, T. F. Jaramillo, J. Rossmeisl, "Identifying active surface phases for metal oxide electrocatalysts: a study of manganese oxide bi-functional catalysts for oxygen reduction and water oxidation catalysis." Phys. Chem. Chem. Phys., 14, 14010-14022 (2012).   DOI
2 M. Bajdich, M. García-Mota, A. Vojvodic, J. K. Norskov, A. T. Bell, "Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water." J. Am. Chem. Soc., 135, 13521-13530 (2013).   DOI
3 H. Kim, J. Park, I. Park, K. Jin, S. E. Jerng, S. H. Kim, K. T. Nam, K. Kang, "Coordination tuning of cobalt phosphates towards efficient water oxidation catalyst." Nat. Commun., 6, 8253 (2015).   DOI
4 N. S. Lewis, D. G. Nocera, "Powering the planet: Chemical challenges in solar energy utilization." Proc. Natl. Acad. Sci. U. S. A., 103, 15729-15735 (2006).   DOI
5 Y. Lee, J. Suntivich, K. J. May, E. E. Perry, Y. Shao-Horn, "Synthesis and activities of rutile $IrO_2\;and\;RuO_2$ nanoparticles for oxygen evolution in acid and alkaline solutions." J. Phys. Chem. Lett., 3, 399-404 (2012).   DOI
6 L. Tong, L. Duan, Y. Xu, T. Privalov, L. Sun, "Structural modifications of mononuclear ruthenium complexes: a combined experimental and theoretical study on the kinetics of ruthenium-catalyzed water oxidation." Angew. Chem.,Int. Ed., 50, 445-449 (2011).   DOI
7 R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, N. M. Markovic, "Trends in activity for the water electrolyser reactions on 3d M (Ni, Co, Fe, Mn) hydr (oxy) oxide catalysts." Nat. Mater., 11, 550 (2012).   DOI
8 L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, L. Sun, A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II." Nat. Chem., 4, 418 (2012).   DOI
9 K. S. Joya, N. K. Subbaiyan, F. D'Souza, H. J. de Groot, "Surface-immobilized single-site iridium complexes for electrocatalytic water splitting." Angew. Chem.,Int. Ed., 51, 9601-9605 (2012).   DOI
10 F. Dionigi, P. Strasser, NiFe-Based (Oxy) hydroxide Catalysts for Oxygen Evolution Reaction in Non-Acidic Electrolytes." Adv. Energy Mater., 6, 1600621 (2016).   DOI
11 J. Park, H. Kim, K. Jin, B. J. Lee, Y.-S. Park, H. Kim, I. Park, K. D. Yang, H.-Y. Jeong, J. Kim, K. T. Hong, H. W. Jang, K. Kang, K. T. Nam, "A new water oxidation catalyst: lithium manganese pyrophosphate with tunable Mn valency." J. Am. Chem. Soc., 136, 4201-4211 (2014).   DOI
12 Z. Lu, H. Wang, D. Kong, K. Yan, P.-C. Hsu, G. Zheng, H. Yao, Z. Liang, X. Sun, Y. Cui, "Electrochemical tuning of layered lithium transition metal oxides for improvement of oxygen evolution reaction." Nat. Commun., 5, 4345 (2014).   DOI
13 J. S. Kim, B. Kim, H. Kim, K. Kang, "Recent Progress on Multimetal Oxide Catalysts for the Oxygen Evolution Reaction." Adv. Energy Mater., 8, 1702774 (2018)   DOI
14 Y. Liu, H. Wang, D. Lin, C. Liu, P.-C. Hsu, W. Liu, W. Chen, Y. Cui, "Electrochemical tuning of olivinetype lithium transition-metal phosphates as efficient water oxidation catalysts." Energy Environ. Sci., 8, 1719-1724 (2015).   DOI
15 A. Gupta, W. D. Chemelewski, C. Buddie Mullins, J. B. Goodenough, "High-Rate Oxygen Evolution Reaction on Al-Doped $LiNiO_2$." Adv. Mater., 27, 6063-6067 (2015).   DOI
16 Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu, Z. Shao, "A High-Performance Electrocatalyst for Oxygen Evolution Reaction: $LiCo_{0.8}Fe_{0.2}O_2$." Adv. Mater., 27, 7150-7155 (2015).   DOI
17 S. Ma, Q. Zhu, L. Chen, W. Wang, D. Chen, "Largescale synthesis of $LiNi_{0.75}Fe_{0.25}PO_4$ covalently anchored on graphene nanosheets for remarkable electrochemical water oxidation." J. Mater. Chem. A, 4, 8149-8154 (2016).   DOI
18 H. Wang, S. Xu, C. Tsai, Y. Li, C. Liu, J. Zhao, Y. Liu, H. Yuan, F. Abild-Pedersen, F. B. Prinz, "Direct and continuous strain control of catalysts with tunable battery electrode materials." Science, 354, 1031-1036 (2016).   DOI
19 H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, "Aqueous rechargeable Li and Na ion batteries." Chem. Rev., 114, 11788-11827 (2014).   DOI
20 S. W. Lee, C. Carlton, M. Risch, Y. Surendranath, S. Chen, S. Furutsuki, A. Yamada, D. G. Nocera, Y. Shao-Horn, "The nature of lithium battery materials under oxygen evolution reaction conditions." J. Am. Chem. Soc., 134, 16959-16962 (2012).   DOI
21 F. Wang, Y. Han, C. S. Lim, Y. Lu, J. Wang, J. Xu, H. Chen, C. Zhang, M. Hong, X. Liu, "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping." Nature, 463, 1061 (2010).   DOI
22 J. K. Hurst, "In pursuit of water oxidation catalysts for solar fuel production." Science, 328, 315-316 (2010).   DOI
23 Y. Zhu, W. Zhou, Y. Chen, J. Yu, X. Xu, C. Su, M. O. Tade, Z. Shao, "Boosting oxygen reduction reaction activity of palladium by stabilizing its unusual oxidation states in perovskite." Chem. Mater., 27, 3048-3054 (2015).   DOI
24 P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. Yu, Z. Liu, S. Kaya, D. Nordlund, H. Ogasawara, "Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts." Nat. Chem., 2, 454 (2010).   DOI
25 B. Hammer, J. K. Norskov, "Theoretical surface science and catalysis-calculations and concepts" Advances in catalysis, 45 71-129 (2000).
26 M. G. Lee, J. S. Park, H. W. Jang, "Solution-Processed Metal Oxide Thin Film Nanostructures for Water Splitting Photoelectrodes: A Review." J. Korean Ceram. Soc., 55, 185-202 (2018).   DOI
27 M. Jacobson, W. Colella, D. Golden, "Cleaning the air and improving health with hydrogen fuel-cell vehicles." Science, 308, 1901-1905 (2005).   DOI
28 S. Chu, Y. Cui, N. Liu, "The path towards sustainable energy." Nat. Mater., 16, 16 (2017).   DOI
29 M. Gratzel, "Photoelectrochemical cells." Nature 414, 338 (2001).   DOI
30 H. Seo, K. H. Cho, H. Ha, S. Park, J. S. Hong, K. Jin, K. T. Nam, "Water oxidation mechanism for 3d transition metal oxide catalysts under neutral condition." J. Korean Ceram. Soc., 54, 1-8 (2017).   DOI
31 T. A. Betley, Q. Wu, T. Van Voorhis, D. G. Nocera, Electronic design criteria for O- O bond formation via metal- oxo complexes." Inorg. Chem., 47, 1849-1861 (2008).   DOI
32 M. W. Kanan, D. G. Nocera, "In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and $Co^{2+}$." Science, 321, 1072-1075 (2008).   DOI
33 J. Suntivich, K. J. May, H. A. Gasteiger, J. B. Goodenough, Y. Shao-Horn, "A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles." Science, 334, 1383-1385 (2011).   DOI