• 제목/요약/키워드: Hydrogen Charging Station

검색결과 47건 처리시간 0.019초

고압 충전 시 수소 저장 탱크의 온도 변화 및 충전량에 관한 해석 (An Analysis on the Temperature Changes and the Amount of Charging of Hydrogen in the Hydrogen Storage Tanks During High-Pressure Filling)

  • 이길강;이길초;명노석;박경우;장선준;권정태
    • 한국수소및신에너지학회논문집
    • /
    • 제32권3호
    • /
    • pp.163-171
    • /
    • 2021
  • Securing energy sources is a key element essential to economic and industrial development in modern society, and research on renewable energy and hydrogen energy is now actively carried out. This research was conducted through experiments and analytical methods on the hydrogen filling process in the hydrogen storage tank of the hydrogen charging station. When low-temperature, high-pressure hydrogen was injected into a high-pressure tanks where hydrogen is charged, the theoretical method was used to analyze the changes in temperature and pressure inside the high-pressure tanks, the amount of hydrogen charge, and the charging time. The analysis was conducted in the initial vacuum state, called the First Cycle, and when the residual pressure was present inside the tanks, called the Second Cycle. As a result of the analysis, the highest temperature inside the tanks in the First Cycle of the high-pressure tank increased to 442.11 K, the temperature measured through the experiment was 441.77 K, the Second Cycle increased to 397.12 K, and the temperature measured through the experiment was 398 K. The results obtained through experimentation and analysis differ within ±1%. The results of this study will be useful for future hydrogen energy research and hydrogen charging station.

액화수소 충전스테이션에서 VCE로 인한 피해영향평가에 관한 연구 (A Study on the Evaluations of Damage Impact due to VCE in Liquid Hydrogen Charging Station)

  • 이수지;천영우;이익모;황용우
    • 한국가스학회지
    • /
    • 제21권5호
    • /
    • pp.56-63
    • /
    • 2017
  • 전세계적으로 수소 충전 스테이션 구축에 많은 투자와 지원을 하고 있는 실정이다. 그러나 수소는 폭발범위가 넓고 확산이 빠른 기체이다. 본 연구에서는 액화수소를 취급하는 소규모~대규모 충전스테이션을 대상으로, 사고시 발생하는 VCE로 인한 피해영향범위를 산출하고, 프로빗 모델을 통해 주변의 인적, 물적 피해를 예측하였다. 더불어, 벤트스택 끝단에서 발생 가능한 Jet fire를 시나리오로 선정하여 최적 높이를 설정하였다. 피해영향범위는 관심과압 6.9kPa을 기준으로 하여, 소규모 저장시설의 경우 8.24m, 중규모 14.10m, 대규모 22.38m이다. 폐출혈로 인한 인체 피해는 소규모와 중규모가 각각 50m, 대규모 100m였으며, 구조물 손상에 따른 피해는 소규모 200m, 중규모 300m 및 대규모 500m이다. 벤트스택의 최적높이는 소규모 4.7m, 중규모 8.8m 및 대규모 16.9m이다.

수소충전소의 연료 계량 방법에 따른 계량 오차가 발생하는 원인 고찰 (The Study to Find Causes for Measuring Differences of Hydrogen Fillings in Hydrogen Refueling Station)

  • 이택홍;강병우;이은웅;정진배;홍석진
    • 한국수소및신에너지학회논문집
    • /
    • 제29권1호
    • /
    • pp.32-40
    • /
    • 2018
  • There has been an measuring errors between state of charge (SOC; kg) value and mass flow meter (MFM) value in dispenser for hydrogen refueling station. Finally, we observed average 15.5% weight difference between these two values and the MFM readings show a 15.5% higher readout of the SOC readings. Each car was charged with average 2.66 kg of hydrogen fuel during this period. In the initial charging of the day shows less measuring value than the final charging with the maximum 0.038 kg times number of filling. There is no effects of atmosphere temperature change for the hydrogen filled weight during one full year such as January's cold winters and August's hot summers.

수소 취급설비의 폭발위험장소에 관한 연구 (A Study on Explosive Hazardous Areas in Hydrogen Handling Facility)

  • 표돈영;임옥택
    • 한국수소및신에너지학회논문집
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2019
  • Safety of hydrogen handling facilities is needed as supply of hydrogen cars has been expanded recently. In this study, the adequacy of safety regulations of hydrogen handling facilities and the risk of damage with hydrogen leakage were studied. The range of explosion hazard location of the hydrogen filling plant was investigated using the computational fluid dynamics (CFD) method, Explosive hazardous area is influenced by leakage type, hole size and sectional area. When the conditions of KS standard are applied, range explosive hazardous area is expanded 7.05 m, maximum. It is about 7 times larger than exceptional standard of hydrogen station. Meanwhile, distance from leakage point to 25% LEL of hydrogen is investigated 1.6 m. Considering the shape of charging hose, regulation of hydrogen station is appropriate.

수소모빌리티 인프라 확대를 위한 수소충전소 사전컨설팅 제도 효과 분석 (Effect Analysis of the Pre-Consulting System of Hydrogen Refueling Station for Expanding the Hydrogen Mobility Infrastructure)

  • 이만욱;김성규;탁송수;김대태
    • 한국가스학회지
    • /
    • 제25권6호
    • /
    • pp.85-91
    • /
    • 2021
  • 정부는 2019년 1월 세계 최고 수준의 수소경제 선도국가로 도약하기 위해 「수소경제 활성화 로드맵」을 발표했으며, 우리나라가 강점이 있는 수소자동차와 연료전지를 양대 축으로 수소경제를 선도할 수 있는 산업생태계 구축 전략을 세웠다. 그 일환으로 2022년 310개소, 2040년 1,200개소의 수소충전소 보급목표를 수립하였다. 이에 발맞춰 2021년 2월 한국가스안전공사는 속도감 있는 수소충전소 구축을 위해 시공단계에서 안전기준에 따른 다양한 현장 문제 발생으로 인한 시공지연을 사전해소하기 위한 수소충전소 사전컨설팅 제도를 운영하게 된다. 본 논문은 사전컨설팅 제도에 대해 알아보고 그 효과를 분석하고자 한다.

Off-Site 패키지형 수소충전소의 FTA 분석 (A Study on FTA of Off-Site Packaged Hydrogen Station)

  • 서두현;김태훈;이광원;최영은
    • 한국수소및신에너지학회논문집
    • /
    • 제31권1호
    • /
    • pp.73-81
    • /
    • 2020
  • For the fault tree analysis (FTA) analysis of the packaged hydrogen filling station, the composition of the charging station was analyzed and the fault tree (FT) diagram was prepared. FT diagrams were created by dividing the causes of events into external factors and internal factors with the hydrogen event as the top event. The external factors include the effects of major disasters caused by natural disasters and external factors as OR gates. Internal factors are divided into tube tailer, compressor & storage tank, and dispenser, which are composed of mistakes in operation process and causes of accidents caused by parts leakage. In this study, the purpose was to improve the hydrogen station. The subjects of this study were domestic packaged hydrogen stations and FTA study was conducted based on the previous studies, failure mode & effect analysis (FMEA) and hazard & operability study (HAZOP). Top event as a hydrogen leaking event and constructed the flow of events based on the previous study. Refer to "Off shore and onshore reliability data 6th edition", "European Industry Reliability Data Bank", technique for human error rate prediction (THERP) for reliability data. We hope that this study will help to improve the safety and activation of the hydrogen station.

수소 충전 시스템의 안전성 평가에 관한 연구 (A study on the safety assessment of Hydrogen refueling system)

  • 김태훈;오영달;이만수
    • 대한안전경영과학회지
    • /
    • 제16권4호
    • /
    • pp.167-173
    • /
    • 2014
  • Hydrogen energy is expanding in range for civil use together with development of pollution-free power sources recently, and it is judged that the use of hydrogen will increase more as a part of carbon dioxide reduction measures according to the Climatic Change Convention. Especially, it is thought that the securement of safety of the used dispenser will be the biggest obstacle in the use of high-pressure hydrogen because the hydrogen station is operated in a high pressure. This study found risks in the process and problems on operation by making use of HAZOP(6 kinds), a qualitative safety evaluation technique, and FMEA(5 kinds), a fault mode effect analysis, for the hydrogen charging system at a hydrogen gas station, derived 6 risk factors from HAZOP and 5 risk factors from FMEA, and prepared measures for it.

수전해 수소충전소 부품별 유해위험요인 분석 (A Study on the Analysis of Hazardous Risk Factors for Component in Hydrogen Station with Water Electrolysis Device)

  • 서두현;이광원;김태훈
    • 한국가스학회지
    • /
    • 제23권6호
    • /
    • pp.33-38
    • /
    • 2019
  • 제조식 수소충전소에서 생산되는 수소가스는 일반적으로 석탄연료의 개질 및 부생가스 등을 활용하지만 순수물을 활용한 수전해 기술의 경우 청정한 기술로 각광 받고 있다. 전기에너지를 이용하여 순수한 물로부터 수소를 생산하는 기술 중에는 향후 가격 및 성능 경쟁에서 우수한 PEM(Polymer Electrolyte Membrane electrolysis)을 이용한 개발이 주로 이루어지고 있다. 이에 본 연구에서는 국내 수소충전소 중 개발단계에 있는 PEM 수전해 수소충전소에 대해 잠재된 유해위험요소를 확인하여 안전한 수소생산 및 수소충전소의 활성화를 도모하고자 한다. 유해위험요소를 도출하기 위해서는 수전해 수소충전소의 설비 및 장치의 안전성이 우선 확보되어야하기에 FMEA(Failure Mode & Effect Analysis)를 수행함으로써 수전해 및 수소충전소의 설비에서의 유해위험요인을 분석하였다.

시장수요예측 모델을 활용한 서울시 수소차 충전시설의 입지선정 우선순위에 관한 연구 (A Study on the Priority of Site Selection for Hydrogen Vehicle Charging Facilities in Seoul Using a Market Demand Prediction Model)

  • 김진식;장국진;이주연;정명석
    • 시스템엔지니어링학술지
    • /
    • 제18권2호
    • /
    • pp.140-148
    • /
    • 2022
  • Hydrogen is expected to be widely applied in most sectors within the current energy system, such as transportation and logistics, and is expected to be economically and technologically utilized as a power source to achieve vehiclebon emission reduction. In particular, the construction of hydrogen charging station infrastructure will not only support the distribution of hydrogen electric vehicles, but also play an important role in building a hydrogen logistics system. Therefore, This paper suggest additional charging infrastructure areas in Seoul with a focus on supply according to the annual average growth rate (CAGR), centering on Seoul, where hydrogen vehicles are most widely distributed. As of February 2022, hydrogen charging infrastructures were installed in Gangseo-gu, Gangdong-gu, Mapo-gu, Jung-gu, and Seocho-gu in downtown Seoul. Next, looking at the number of hydrogen vehicles by administrative dong in Seoul from 2018 to 2022, Seocho-gu has the most with 246 as of 2022, and Dongjak-gu has the highest average growth rate of 215.4% with a CAGR of 215.4%. Therefore, as a result of CAGR analysis, Dongjak-gu is expected to supply the most hydrogen vehicles in the future, and Seocho-gu currently has the most hydrogen vehicles, so it is likely that additional hydrogen charging infrastructure will be needed between Dongjak-gu and Seocho-gu.

수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구 (Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank)

  • 김지형;송창용
    • 한국산업융합학회 논문집
    • /
    • 제27권1호
    • /
    • pp.39-46
    • /
    • 2024
  • As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.