DOI QR코드

DOI QR Code

Parametric Study of Shape Design for Strength Performance Enhancement of Bellows in Hydrogen Compressor-embedded Refueling Tank

수소 압축기 내장형 충전 탱크의 벨로우즈 강도 성능 향상을 위한 형상 설계 파라미터 연구

  • 김지형 (워크온시뮬레이션(주)) ;
  • 송창용 (목포대학교 조선해양공학과)
  • Received : 2023.12.23
  • Accepted : 2024.01.22
  • Published : 2024.02.28

Abstract

As the development of hydrogen vehicles has accelerated in recent years, it is necessary to develop a storage tank for hydrogen fueling stations capable of high-pressure charging, and for this purpose, a new system with a compressor-embedded refueling tank is required. In this study, the parametric study of shape design based on strength performance evaluation was carried out to find the optimal shape design of bellows, the core component of compressor-embedded refueling tank for a newly developed hydrogen refueling station capable of high-pressure charging above 1,000 bar. The design factors for parametric study were contour shape and radius of bellows, and the performance factors were the maximum stress and the gap distance in the contact direction. In the shape design of the compressor bellows for hydrogen refueling station considered in this study, it was found that adjusting the contour radius is an appropriate design method to improve the compression performance and structural safety.

Keywords

Acknowledgement

본 연구는 20 22년도 산업통상자원부의 재원으로 한국에너지기술평가원(KETEP)의 지원을 받아 수행한 연구 과제[차세대 고압(1,000기압) 수소압축기 개발, No. 20223030040180], 해양수산부의 재원으로 한국해양수산과학기술진흥원의 지원을 받아 수행한 연구 과제(친환경 선박용 전기추진시스템 시험평가 및 무탄소연료 선박적용성 실증기술개발, No. 1525013494/PMS5390), 그리고 2023년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신사업(과제관리번호: 2021RIS-002)의 결과입니다.

References

  1. C. H. Joe, S. K. Kang, B. S. Kim, and K. S. Lee, "Risk assessment for high capacity multiport hydrogen refueling station", Journal of Hydrogen and New Energy, vol. 34, no. 5, pp. 505-513, (2023).  https://doi.org/10.7316/JHNE.2023.34.5.505
  2. S. H. Oh and H. K. Suh, "Analysis of flow performance factors according to extreme temperature conditions of hydrogen inflow of FCEV charging system check valve," Journal of Hydrogen and New Energy, vol. 34, no. 5, pp. 514-525, (2023).  https://doi.org/10.7316/JHNE.2023.34.5.514
  3. Y. B. Seo, G. Park, and C. Kim, "Structural design and fatigue life prediction of an ultrahigh-pressure vessel (Type I) to be used in a hydrogen gas station," Transactions of the Korean Society of Mechanical Engineers - A, vol. 47, no. 3, pp. 255-261, (2023).  https://doi.org/10.3795/KSME-A.2023.47.3.255
  4. J. T. Back, J. H. Mun, J. H. Min, K. B. Park, K. T. Ki, and S. W. Joo, "A numerical analysis study on charging conditions of Type IV high aspect ratio modular hydrogen storage vessel," Journal of Hydrogen and New Energy, vol. 34, no. 1, pp. 26-31, (2023).  https://doi.org/10.7316/KHNES.2023.34.1.26
  5. J. U. Baek, G. M. Gwak, N. Y. Kim, Y. M. Cho, and S. Ki Lyu, "Study on the optimal design of the nozzle shape of the 700 bar hydrogen refueling nozzle for hydrogen electric vehicles," Journal of the Korean Society of Manufacturing Process Engineers, vol. 21, no. 7, pp. 28-33, (2022).  https://doi.org/10.14775/ksmpe.2022.21.07.028
  6. Siemens, "Element Library Reference", Siemens Product Lifecycle Management Software, USA, (2019). 
  7. Siemens, "Multi-step Nonlinear User's Guide", Siemens Product Lifecycle Management Software, USA, (2019). 
  8. S. H. Park, "Design of Exp eriments", Minyoung Publishing, Korea, (2012). 
  9. D. J. Lee, C. Y. Song, and K. Lee, "Surrogate model based approximate optimization of passive type deck support frame for offshore plant floatover installation," Journal of Ocean Engineering and Technology, vol. 35, no. 2, pp. 131-140, (2021).  https://doi.org/10.26748/KSOE.2021.002
  10. Siemens, "HEEDS User's Guide", Siemens Product Lifecycle Management Software, USA, (2019).