• Title/Summary/Keyword: Hydrodynamics Characteristics

Search Result 120, Processing Time 0.019 seconds

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.61-97
    • /
    • 2016
  • This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Mathematical Model for a Three-Phase Fluidized Bed Biofilm Reactor in Wastewater Treatment

  • Choi, Jeong-Woo;Min, Ju-Hong;Lee, Won-Hong;Lee, Sang-Back
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.4 no.1
    • /
    • pp.51-58
    • /
    • 1999
  • A mathematical model for a three phase fluidized bed bioreactor (TFBBR) was proposed to describe oxygen utilization rate, biomass concentration and the removal efficiency of Chemical Oxygen Demand (COD) in wastewater treatment. The model consisted of the biofilm model to describe the oxygen uptake rate and the hydraulic model to describe flow characteristics to cause the oxygen distribution in the reactor. The biofilm model represented the oxygen uptake rate by individual bioparticle and the hydrodynamics of fluids presented an axial dispersion flow with back mixing in the liquid phase and a plug flow in the gas phase. The difference of setting velocity along the column height due to the distributions of size and number of bioparticle was considered. The proposed model was able to predict the biomass concentration and the dissolved oxygen concentration along the column height. The removal efficiency of COD was calculated based on the oxygen consumption amounts that were obtained from the dissolved oxygen concentration. The predicted oxygen concentration by the proposed model agreed reasonably well with experimental measurement in a TFBBR. The effects of various operating parameters on the oxygen concentration were simulated based on the proposed model. The media size and media density affected the performance of a TFBBR. The dissolved oxygen concentration was significantly affected by the superficial liquid velocity but the removal efficiency of COD was significantly affected by the superficial gas velocity.

  • PDF

Dynamic Stability Analysis of Floating Transport Wind-Turbine Foundation Considering Internal Fluid Sloshing Effect (내부 유체 슬로싱 효과를 고려한 부유이송 해상풍력 기초의 동적 안정성 해석)

  • Hong, Seokjin;Kim, Donghyun;Kang, Sinwook;Kang, Keumseok
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.461-467
    • /
    • 2016
  • In order to install the floating transport type wind-turbine foundation, water pumping is used to sink the foundation. During this process, its mass and center of gravity, and buoyancy center become continuously changed so that the dynamic stability of the floating foundation become unstable. Dynamic stability analysis of the floating foundation is a complex problem since it should take into account not only the environmental wave, wind, and current loads but also its weight change effect simultaneously considering six-degree-of-freedom motion. In this study, advanced numerical method based on the coupled computational fluid dynamics (CFD) and multi-body dynamics (MBD) approach has been applied to the dynamic stability analysis of the floating foundation. The sloshing effect of foundation internal water is also considered and the floating dynamic characteristics are numerically investigated in detail.

Investigation on the Behavioral and Hydrodynamic Characteristics of Submerged Floating Tunnel based on Regular Wave Experiments (규칙파 실험에 의한 수중터널의 거동 및 동수역학적 특성 고찰)

  • Oh, Sang-Ho;Park, Woo Sun;Jang, Se-Chul;Kim, Dong Hyawn
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1887-1895
    • /
    • 2013
  • In this study, physical experiments were performed in a two-dimensional wave flume to investigate the hydraulic and structural performance of a SFT model. The experiments were made by generating regular waves of different heights and periods under various conditions of buoyancy to weight ratio (BWR) and water depth as well. Through the analysis of the experimental data, it was clarified that the sway and heave motions of the tunnel body linearly increased with wave height and period. In contrast, the roll motion was rather insignificant unless wave height and period were comparatively large as the design wave. Similarly proportional relationship with respect to wave height and period was obtained in case of the maximum tensile force acting on the tension legs and the wave loads on the tunnel body. Regarding the change of water depth or BWR conditions, generally decreasing trend was obtained according to increase of water depth but decrease of BWR for both of the magnitudes of structural behaviors or wave loadings on the SFT structure.

Study on Analysis of Flow Field in Ejector Suction Pipe (이젝터 흡입관의 유동장 분석에 관한 연구)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.989-999
    • /
    • 2012
  • An ejector is a fluid transportation device that operates based on the principle that a high-pressure fluid is spouted through a driving pipe and the pressure of a low-pressure fluid is increased through exchange of momentum with a low-pressure gas. Steam-steam ejectors have been widely used for suction, mixture, and dehydration. They can be easily used in places where fluid moves and expenses are reasonable. In addition, such ejectors are a semi-permanent fluid device that requires little maintenance. In this study, we present an optimized design by analyzing what cannot be obtained through experiments in order to improve the device performance, analyze general contents of a flow by acquiring exact test data on specific and interpretative areas using more advanced experimental techniques, and identify the flow characteristics of a branch pipe by examining the validity of experiments using computer hydrodynamics simulations.

Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill (유출유의 초기 확산예측을 위한 고해상도 결합모형 개발)

  • Son, Sangyoung;Lee, Chilwoo;Yoon, Hyun-Doug;Jung, Tae Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.189-197
    • /
    • 2017
  • The development and application of accurate numerical models is essential to promptly respond to early stage of oil spill incidents occurring in nearshore area. In this study, the coupled modelling system was developed by integrating the advection-diffusion-transformation model for oil slick with the Boussinesq model, which incorporates non-linear, discrete, turbulent and rotational effects of wavy flows for accurate representation of nearshore hydrodynamics. The developed model examined its applicability through the application into real coastal region with topographical complexity and characteristics of the resulting flow originated from it. The highly-resolved, coupled model developed in this study is believed to assist in establishing the disaster prevention system that can prepare effectively for oil disasters under extreme ocean climate conditions and thus minimize industrial, economical, and environmental damages.

Study on optimum structure of air-lift bio-reactor using numerical analysis of two-phase flow (이상 유동 수치해석을 이용한 기포 구동 생물 반응기 내부 최적 구조에 관한 연구)

  • Kim, San;Chung, Ji Hong;Lee, Jae Won;Sohn, Dong Kee;Ko, Han Seo
    • Journal of the Korean Society of Visualization
    • /
    • v.17 no.3
    • /
    • pp.24-31
    • /
    • 2019
  • Recently, an air-lift bio-reactor operated by micro bubbles has been utilized to product hydrogen fuel. To enhance the performance, characteristics of hydrodynamics inside the bio-reactor were analyzed using a numerical simulation for two-phase flow. An Eulerian model was employed for both of liquid and gas phases. The standard k-ε model was used for turbulence induced by micro bubbles. A Population Balance Model was employed to consider size distribution of bubbles. A hollow cylinder was introduced at the center of the reactor to reduce a dead area which disturbs circulation of CO bubbles. An appropriate diameter of the draft tube and hollow cylinder were optimized for better performance of the bio-reactor. The optimum model could be obtained when the cross-sectional area ratio of the hollow cylinder to the reactor, and the width ratio of the riser to the downcomer approached 0.4 and 3.5, respectively. Consequently, it is expected that the optimum model could enhance the performance of the bio-reactor with the homogeneous distribution and higher density of CO, and more effective mixing.

3-D Applicability of the ESCORT Model - Simulation of Freshwater Discharge (ESCORT 모형의 3차원 적용성 - 담수방류 모의)

  • Kang, Ju-Whan;Kim, Yang-Seon;Park, Seon-Jung;So, Jae-Kwi
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.3
    • /
    • pp.230-240
    • /
    • 2009
  • The ESCORT model is applied at Mokpo coastal zone to analyze the effect of fresh water discharge released from the gates of the Youngsan River sea-dyke. Applicability and validity of both 2-D and 3-D hydrodynamic modules could be guaranteed by simulating hydrodynamic feature with ebb dominance characteristics. Then, effects of the released discharge on the hydrodynamics are investigated. And analysis of the effects on diffusion phenomena show that 3-D model is essential for such diffusion modelling. Moreover, vertical salinity distributions near the gates are examined, and the influence range of fresh water is also estimated, which shows that dilution of fresh water is going on slowly because of poor flushing.

Low mass star formation using the SPH simulation

  • Yun, Hye-Ryeon;Son, Jeong-Ju;Huvver, David Anthony
    • 한국지구과학회:학술대회논문집
    • /
    • 2010.04a
    • /
    • pp.118-119
    • /
    • 2010
  • star formation is one of the hottest areas in astromy and increasing evidence is showing that star formation is actually a highly dynamic precess driven and strongly influenced by turbulent dynamics of molecular clouds. despite significant progress ir observation in process of star formation, earliest stage of star formation remains imcomplete. so, computer simulations are essential tool since the complex dynamics of star formation. We have performed simulation about the process of low mass star formation using the SPH simulation. we use the dragon-code, the most advanced star formation N-body Smoothed Particle Hydrodynamics (SPH) codes. We present how change the internal properties and how should evolve, while changing the values for Mass turbulence, central density and so on. ( mass range of values is 0.1 < M < $5\;M{\odot}$) based on this results, we discussed their circumstellar, characteristics they were borned and how they will evove while the Birth of low mass stars from interstellar cloud.

  • PDF

A Numerical Study on the Geometry of Jet Injection Nozzle of a Coanda Control Surface

  • Seo, Dae-Won;Kim, Jong-Hyun;Kim, Hyo-Chul;Lee, Seung-Hee
    • Journal of Ship and Ocean Technology
    • /
    • v.12 no.3
    • /
    • pp.36-54
    • /
    • 2008
  • A jet stream applied tangential to a curved surface in fluid increases lift force by strengthening circulation around the surface and this phenomenon is known as the Coanda effect. Many experimental and numerical studies have been performed on the Coanda effect and the results found to be useful in various fields of aerodynamics. Recently, preliminary studies on Coanda control surface are in progress to look for practical application in marine hydrodynamics since various control surfaces are used to control behaviors of ships and offshore structures. In the present study, the performance of a Coanda control surface with different geometries of the jet injection nozzle was surveyed to assess applicability to ship rudders. A numerical simulation was carried out to study flow characteristics around a section of a horn type rudder subjected to a tangential jet stream. The RANS equations, discretized by a cell-centered finite volume method were used for this computation after verification by comparing to the experimental data available. Special attentions have been given to the sensitivity of the lift performance of a Coanda rudder to the location of the slit (outlet) and intake of the gap between the horn and rudder surface at the various angles of attack. It is found that the location of the water intake is important in enhancing the lift because the gap functions as a conduit of nozzle generating a jet sheet on the rudder surface.