DOI QR코드

DOI QR Code

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part II: Sediment transport

  • Bakhtyar, R. (Davidson Laboratory, Stevens Institute of Technology) ;
  • Dastgheib, A. (UNESCO-IHE) ;
  • Roelvink, D. (UNESCO-IHE) ;
  • Barry, D.A. (Laboratoire de technologie ecologique, Institut d'ingenierie de l'environnement, Faculte de l'environnement naturel, architectural et construit (ENAC), Station 2, Ecole polytechnique federale de Lausanne (EPFL))
  • Received : 2015.07.01
  • Accepted : 2016.02.09
  • Published : 2016.03.25

Abstract

This is the second of two papers on the 3D numerical modeling of nearshore hydro- and morphodynamics. In Part I, the focus was on surf and swash zone hydrodynamics in the cross-shore and longshore directions. Here, we consider nearshore processes with an emphasis on the effects of oceanic forcing and beach characteristics on sediment transport in the cross- and longshore directions, as well as on foreshore bathymetry changes. The Delft3D and XBeach models were used with four turbulence closures (viz., ${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES) to solve the 3D Navier-Stokes equations for incompressible flow as well as the beach morphology. The sediment transport module simulates both bed load and suspended load transport of non-cohesive sediments. Twenty sets of numerical experiments combining nine control parameters under a range of bed characteristics and incident wave and tidal conditions were simulated. For each case, the general morphological response in shore-normal and shore-parallel directions was presented. Numerical results showed that the ${\kappa}-{\varepsilon}$ and H-LES closure models yield similar results that are in better agreement with existing morphodynamic observations than the results of the other turbulence models. The simulations showed that wave forcing drives a sediment circulation pattern that results in bar and berm formation. However, together with wave forcing, tides modulate the predicted nearshore sediment dynamics. The combination of tides and wave action has a notable effect on longshore suspended sediment transport fluxes, relative to wave action alone. The model's ability to predict sediment transport under propagation of obliquely incident wave conditions underscores its potential for understanding the evolution of beach morphology at field scale. For example, the results of the model confirmed that the wave characteristics have a considerable effect on the cumulative erosion/deposition, cross-shore distribution of longshore sediment transport and transport rate across and along the beach face. In addition, for the same type of oceanic forcing, the beach morphology exhibits different erosive characteristics depending on grain size (e.g., foreshore profile evolution is erosive or accretive on fine or coarse sand beaches, respectively). Decreasing wave height increases the proportion of onshore to offshore fluxes, almost reaching a neutral net balance. The sediment movement increases with wave height, which is the dominant factor controlling the beach face shape.

Keywords

Acknowledgement

Supported by : Swiss National Foundation

References

  1. Aagaard, T. and Hughes, M.G. (2006), "Sediment suspension and turbulence in the swash zone of dissipative beaches", Mar. Geol., 228(1-4), 117-135. https://doi.org/10.1016/j.margeo.2006.01.003
  2. Antuono, M., Brocchini, M. and Grosso, G. (2007), "Integral properties of the swash zone and averaging. Part 3. Longshore shoreline boundary conditions for wave-averaged nearshore circulation models", J. Fluid Mech., 573, 399-415. https://doi.org/10.1017/S0022112006004010
  3. Baba, Y. and Camenen, B. (2008), "Importance of the swash longshore sediment transport in morphodynamic models", Proceedings of the Coastal Sediments '07, ASCE, New Orleans, Louisiana, USA.
  4. Bakhtyar, R., Barry, D.A., Li, L., Jeng, D.S. and Yeganeh-Bakhtiary, A. (2009a), "Modeling sediment transport in the swash zone: A review", Ocean Eng., 36(9-10), 767-783. https://doi.org/10.1016/j.oceaneng.2009.03.003
  5. Bakhtyar, R., Yeganeh-Bakhtiary, A., Barry, D.A. and Ghaheri, A. (2009b), "Two-phase hydrodynamic and sediment transport modeling of wave-generated sheet flow", Adv. Water Resour., 32(8), 1267-1283. https://doi.org/10.1016/j.advwatres.2009.05.002
  6. Bakhtyar, R., Ghaheri, A., Yeganeh-Bakhtiary, A. and Barry, D.A. (2009c), "Process-based model for nearshore hydrodynamics, sediment transport and morphological evolution in the surf and swash zones", Appl. Ocean Res., 31(1), 44-56. https://doi.org/10.1016/j.apor.2009.05.002
  7. Bakhtyar, R., Barry, D.A., Yeganeh-Bakhtiary, A. and Ghaheri, A. (2009d), "Numerical simulation of surf-swash zone motions and turbulent flow", Adv. Water Resour., 32(2), 250-263. https://doi.org/10.1016/j.advwatres.2008.11.004
  8. Bakhtyar, R., Yeganeh-Bakhtiary, A, Barry, D.A. and Ghaheri, A. (2009e), "Euler-Euler coupled two-phase flow modeling of sheet flow sediment motion in nearshore", J. Coastal. Res., 56, 467-471. https://doi.org/10.1016/j.coastaleng.2008.10.012
  9. Bakhtyar, R., Barry, D.A., Yeganeh-Bakhtiary, A., Li, L., Parlange, J.Y. and Sander, G.C. (2010a), "Numerical simulation of two-phase flow for sediment transport in the inner surf and swash zones", Adv. Water Resour., 33(3), 277-290. https://doi.org/10.1016/j.advwatres.2009.12.004
  10. Bakhtyar, R., Razmi, A.M., Barry, D.A., Yeganeh-Bakhtiary, A. and Zou, Q.P. (2010b), "Air-water two-phase flow model of turbulent surf and swash zone wave motions", Adv. Water Resour., 33(12), 1560-1574. https://doi.org/10.1016/j.advwatres.2010.09.007
  11. Bakhtyar, R., Brovelli, A., Barry, D.A. and Li, L. (2011), "Wave-induced watertable fluctuations, sediment transport and beach profile change: Modeling and comparison with large-scale laboratory experiments", Coast. Eng. J., 58(1), 103-118. https://doi.org/10.1016/j.coastaleng.2010.08.004
  12. Bakhtyar, R., Barry, D.A. and Brovelli, A. (2012a), "Numerical experiments on interactions between wave motion and variable-density coastal aquifers", Coast. Eng. J., 60, 95-108. https://doi.org/10.1016/j.coastaleng.2011.09.001
  13. Bakhtyar, R., Barry, D.A. and Kees, C.E. (2012b), "Numerical experiments on breaking waves on contrasting beaches using a two-phase flow approach", Adv. Water Resour., 48, 68-78. https://doi.org/10.1016/j.advwatres.2012.03.025
  14. Bakhtyar, R., Brovelli, A., Barry, D.A., Robinson, C. and Li, L. (2013a), "Transport of variable-density solute plumes in beach aquifers in response to oceanic forcing", Adv. Water Resour., 53, 208-224. https://doi.org/10.1016/j.advwatres.2012.11.009
  15. Bakhtyar, R., Dastgheib, A., Roelvink, D. and Barry, D.A. (2016), "Impacts of wave and tidal forcing on 3D nearshore processes in natural beaches. Part I: Flow and turbulence fields", Ocean Syst. Eng., In Press [part I].
  16. Bakhtyar, R., Razmi, A. Barry, D.A., Kees, C.E., Yeganeh-Bakhtiary, A. and Miller, C.T. (2013c), "Two-phase flow modeling of the influence of wave shapes and bed slope on nearshore hydrodynamics", J. Coastal. Res., 65, 159-164. https://doi.org/10.2112/SI65-028.1
  17. Bayram, A., Larson, M. and Hanson, H. (2007), "A new formula for the total longshore sediment transport rate", Coast. Eng. J., 54(9), 700-710. https://doi.org/10.1016/j.coastaleng.2007.04.001
  18. Cartier, A. and Hequette, A. (2011a), "Variation in longshore sediment transport under low to moderate conditions on barred macrotidal beaches", J. Coastal. Res., 64, 45-49.
  19. Cartier, A. and Hequette, A. (2011b), "Estimation of longshore and cross-shore sediment transport on sandy macrotidal beaches of northern France", Proceedings of the Coastal Sediments '11, Miami, Florida, USA, 2-6 May.
  20. Celikoglua, Y., Yuksel, Y. and Kabdasli, M.S. (2004), "Longshore sorting on a beach under wave action", Ocean Eng., 31(11-12), 1351-1375. https://doi.org/10.1016/j.oceaneng.2004.02.001
  21. Chen, Q., Kirby, J.T., Dalrymple, R.A., Shi, F. and Thornton, E.B. (2003), "Boussinesq modeling of longshore currents", J. Geophys. Res., 108, 3362, doi:10.1029/2002JC001308, 2003.
  22. Christensen, E.D., Walstra, D.J. and Emarat, N. (2002), "Vertical variation of the flow across the surf zone", J. Coast. Eng., 45(3-4), 169-198. https://doi.org/10.1016/S0378-3839(02)00033-9
  23. Dail, H.J., Merrifield, M.A. and Bevis, M. (2000), "Steep beach morphology changes due to energetic wave forcing", Mar. Geol., 162(2-4), 443-458. https://doi.org/10.1016/S0025-3227(99)00072-9
  24. Dastgheib, A., Roelvink, J.A. and Wang, Z.B. (2008), "Long-term process-based morphological modeling of the Marsdiep tidal basin", Mar. Geol., 256(1-4), 90-100. https://doi.org/10.1016/j.margeo.2008.10.003
  25. Dastgheib, A., Roelvink, J.A. and Van der Wegen, M. (2009), "Effect of different sediment mixtures on the long term morphological simulation of tidal basins", Proceedings of the RCEM (Santa Fe, Argentina).
  26. Davidson, M.A., Russell, P.E., Huntley, D.A. and Hardisty, J. (1993), "Tidal asymmetry in suspended sand transport on a macrotidal intermediate beach", Mar. Geol., 110(3-4), 333-353. https://doi.org/10.1016/0025-3227(93)90092-A
  27. Delft3D-Flow User Manual 2009. Version: 3.15, Revision: 17474, http://delftsoftware.wldelft.nl/index.php?option=com_docman&task=cat_view&gid=39&Itemid=61, last accessed 2 Feb 2016.
  28. Drake, T.G. and Calantoni, J. (2001), "Discrete particle model for sheet flow sediment transport in the nearshore", J. Geophys. Res., 106, 859-868. https://doi.org/10.1029/2000JC000316
  29. Ellis, J. and Stone, G.W. (2006), "Numerical simulation of net longshore sediment transport and granulometry of surficial sediments along Chandeleur Island, Louisiana, USA", Mar. Geol., 232(3-4), 115-129. https://doi.org/10.1016/j.margeo.2006.05.001
  30. Elfrink, B. and Baldock, T.E. (2002), "Hydrodynamics and sediment transport in the swash zone: A review and perspectives", Coast. Eng. J., 45(3-4), 149-167. https://doi.org/10.1016/S0378-3839(02)00032-7
  31. Esteves, L.S., Williams, J.J. and Lisniowski, M.A. (2009), "Measuring and modelling longshore sediment transport", Coast. Shelf Sci., 83(1), 47-59. https://doi.org/10.1016/j.ecss.2009.03.020
  32. Feddersen, F., Guza, R.T., Elgar, S. and Herbers, T.H.C. (1998), "Alongshore momentum balances in the nearshore", J. Geophys. Res., 103, 667-15,676.
  33. Ferguson, R.I. and Church, M. (2004), "A simple universal equation for grain settling velocity", J. Sediment. Geol., 74, 933-937. https://doi.org/10.1306/051204740933
  34. Garcez Faria, A.F., Thornton, E.B., Stanton, T.P., Soares, C.V. and Lippmann, T.C. (1998), "Vertical profiles of longshore currents and related bed stress and bottom roughness", J. Geophys. Res., 103, 3217-3232. https://doi.org/10.1029/97JC02265
  35. Garnier, R., Calvete, D., Falques, A. and Dodd, N. (2008), "Modelling the formation and the long-term behavior of rip channel systems from the deformation of a longshore bar", J. Geophys. Res., 113(7), C07053, doi:10.1029/2007JC004632.
  36. Hanson, H., Aarninkhof, S., Capobianco, M., Jimenez, J.A., Larson, M., Nicholls, R.J., Plant, N.G., Southgate, H.N., Steetzel, H.J., Stive, M.J.F. and de Vriend, H.J. (2003), "Modelling of coastal evolution on yearly and decadal time scales", J. Coastal. Res., 19(4), 790-811, http://www.jstor.org/stable/4299221, last accessed 1 October 2015
  37. Harcourt-Baldwin, J.L. and Diedericks, G.P.J. (2006), "Numerical modelling and analysis of temperature controlled density currents in Tomales Bay, California", Estuar. Coast. Shelf Sci., 66(3-4), 417-428. https://doi.org/10.1016/j.ecss.2005.10.001
  38. Horn, D.P. and Mason, T. (1994), "Swash zone sediment transport modes", Mar. Geol., 120(3-4), 309-325. https://doi.org/10.1016/0025-3227(94)90064-7
  39. Hughes, S.A. and Chio, T.S. (1981), Beach and dune erosion during severe storms. Coastal and Oceanographic Engineering Department, University of Florida, USA. Report No. UFL/COEL/TR/043.
  40. Johnson, B.D. and Smith, J.M. (2005), "Longshore current forcing by irregular waves", J. Geophys. Res., 110(6), C06006, doi:10.1029/2004JC002336.
  41. Kamphuis, J.W. (1991), "Alongshore sediment transport rate", J. Waterw. Port C.-ASCE., 117(6), 624-641. https://doi.org/10.1061/(ASCE)0733-950X(1991)117:6(624)
  42. Karambas, T.V. (2006), "Prediction of sediment transport in the swash zone by using a nonlinear wave model", Cont. Shelf Res., 26(5), 599-609. https://doi.org/10.1016/j.csr.2006.01.014
  43. Karunarathna, H., Chadwick, A. and Lawrence, J. (2005), "Numerical experiments of swash oscillations on steep and gentle beaches", Coast. Eng. J., 52(6), 497-511. https://doi.org/10.1016/j.coastaleng.2005.02.003
  44. Komar, P.D. and Inman, D.L. (1970), "Longshore sand transport on beaches", J. Geophys. Res., 30, 5514-5527.
  45. Kumar, V.S., Anand, N.M., Chandramohan, P. and Naik, G.N. (2003), "Longshore sediment transport rate-measurement and estimation, central west coast of India", Coast. Eng. J., 48(2), 95-109. https://doi.org/10.1016/S0378-3839(02)00172-2
  46. Lee, K.H., Mizutani, N., Hur, D.S. and Kamiya, A. (2007), "The effect of groundwater on topographic changes in a gravel beach", Ocean Eng., 34(3-4), 605-615. https://doi.org/10.1016/j.oceaneng.2005.10.026
  47. Le Mehaute, B. (1970), "A comparison of fluvial and coastal similitude", Proceedings of the 12th ICCE, Washington, USA.
  48. Lemos, C.M. (1992), "A simple numerical technique for turbulent flows with free surfaces", Int. J. Numer. Meth. Fl., 15(2), 127-146. https://doi.org/10.1002/fld.1650150202
  49. Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M. and Stelling, G.S. (2004), "Development and validation of a three-dimensional model", Coast. Eng. J., 51(8-9), 883-915. https://doi.org/10.1016/j.coastaleng.2004.07.014
  50. Liang, B., Li, H. and Lee, D. (2007), "Numerical study of three-dimensional suspended sediment transport in waves and currents", Ocean Eng., 34(11-12), 1569-1583. https://doi.org/10.1016/j.oceaneng.2006.12.002
  51. Longuet-Higgins, M.S. (1970), "Longshore currents generated by obliquely incident sea waves", J. Geophys. Res., 75, 6778-6789. https://doi.org/10.1029/JC075i033p06778
  52. Masselink, G. and Puleo, J.A. (2006), "Swash-zone morphodynamics", Cont. Shelf Res., 26(5), 661-680. https://doi.org/10.1016/j.csr.2006.01.015
  53. Masselink, G. and Black, K.P. (1995), "Magnitude and cross-shore distribution of bed return flow measured on natural beaches", Coast. Eng. J., 25(3-4), 165-190. https://doi.org/10.1016/0378-3839(95)00002-S
  54. Miles, J., Butt, T. and Russell, P. (2006), "Swash zone sediment dynamics: A comparison of a dissipative and an intermediate beach", Mar. Geol., 231(1-4), 181-200. https://doi.org/10.1016/j.margeo.2006.06.002
  55. Morelissen, R., Bijlsm, A.C. and Tapley, M.J. (2010), "A dedicated tidal stream atlas of the stratified tidal flows near Stonecutters Bridge, Hong Kong, based on 3D numerical simulations with HLES", J. Hydro-environm. Res., 3(4), 224-231. https://doi.org/10.1016/j.jher.2009.10.007
  56. Newberger, P.A. and Allen, J.S. (2007a), "Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 1. Formulation", J. Geophys. Res., 112, C08018, doi:10.1029/2006JC003472.
  57. Newberger, P.A. and Allen, J.S. (2007b), "Forcing a three-dimensional, hydrostatic, primitive-equation model for application in the surf zone: 2. Application to DUCK94", J. Geophys. Res., 112, C08019, doi:10.1029/2006JC003474.
  58. Pattiaratchi, C.B. and Collins, M.B. (1984), "Sediment transport under waves and tidal currents: A case study from the northern Bristol Channel, U.K.", Mar. Geol., 56(1-4), 27-40. https://doi.org/10.1016/0025-3227(84)90004-5
  59. Pedrozo-Acuna, A., Simmonds, D.J., Chadwick, A.J. and Silva, R. (2007), "A numerical-empirical approach for evaluating morphodynamic processes on gravel and mixed sand-gravel beaches", Mar. Geol., 241(1-4), 1-18. https://doi.org/10.1016/j.margeo.2007.02.013
  60. Polome, P., Marzetti, S. and van der Veen, A. (2005), "Economic and social demands for coastal protection", Coast. Eng. J., 52(10-11), 819-840. https://doi.org/10.1016/j.coastaleng.2005.09.009
  61. Razmi, A.M., Bakhtyar, R. and Barry, D.A. (2011), "Numerical simulation of two-phase flow for nearshore hydrodynamics under wave-current interactions", J. Coastal. Res., I64, 1165-1169.
  62. Reeve, D.E. and Fleming, C.A. (1997), "A statistical-dynamical method for predicting long term coastal evolution", Coast. Eng. J., 30(3-4), 259-280. https://doi.org/10.1016/S0378-3839(96)00048-8
  63. Reniers, A.J.H.M., Thornton, E.B. and Roelvink, J.A. (2004), "Morphodynamic modeling of an embayed beach under wave-group forcing", J. Geophys. Res., 109(1), C01030, doi:10.1029/2002JC001586.
  64. Reniers, A.J.H.M., MacMagan, J.H., Thornton, E.B., Stanton, T.P., Henriquez, M., Brown, J.W., Brown, J.A. and Gallagher, E. (2009), "Surf zone surface retention on a rip channeled beach", J. Geophys. Res., 114, C10010, doi:10.1029/2008JC005153.
  65. Roelvink, D., Reniers, A., van Dongeren, A., de Vries, J.T., McCall, R. and Lescinski, J. (2009), "Modelling storm impacts on beaches, dunes and barrier islands", Coast. Eng. J., 56(11-12), 1133-1152. https://doi.org/10.1016/j.coastaleng.2009.08.006
  66. Roelvink, J.A. and Reniers, A.J.H.M. (2012), "A guide to modelling coastal morphology", Adv. Coast. Ocean Eng., 12, World Scientific Publications, Singapore.
  67. Ruggieroa, P., Buijsma, M., Kaminskyc, G.M. and Gelfenbaum, G. (2010), "Modeling the effects of wave climate and sediment supply variability on large-scale shoreline change", Mar. Geol., 273(1-4), 127-140. https://doi.org/10.1016/j.margeo.2010.02.008
  68. Saravanan, S. and Chandrasekar, N. (2010), "Monthly and seasonal variation in beach profile along the coast of Tiruchendur and Kanyakumari, Tamilnadu, India", J. Iber. Geol., 36(1), 39-54.
  69. Trim, L., She, K. and Pope, D.J. (2002), "Tidal effects on cross-shore sediment transport on a shingle beach", J. Coastal. Res., 36, 708-715. https://doi.org/10.2112/1551-5036-36.sp1.708
  70. USACE (1984), Shore Protection Manual. Department of the Army, U.S. Corps of Engineers, Washington, DC, USA.
  71. van Rijn, L.C. (2011), Principles of Sediment Transport in Rivers, Estuaries and Coastal Seas. AQUA Publications, Amsterdam, The Netherlands.
  72. van Rijn, L.C., Tonnon, P.K. and Walstra, D.J.R. (2011), "Numerical modelling of erosion and accretion of plane sloping beaches at different scales", Coast. Eng. J., 58(7), 637-655. https://doi.org/10.1016/j.coastaleng.2011.01.009
  73. van Wellen, E., Baldock, T., Chadwick, A.J. and Simmonds, D. (2000), "STRAND: A model for longshore sediment transport in the swash zone", Proceedings of the 27th International Conference on Coastal Engineering, ASCE, Sydney, Australia.
  74. van der Wegen, M., Dastgheib, A., Jaffe, B.E. and Roelvink, J.A. (2011), "Bed composition generation for morphodynamic modeling: case study of San Pablo Bay in California, USA", Ocean Dyn., 61(2),173-186. https://doi.org/10.1007/s10236-010-0314-2
  75. Warner, J.C., Sherwood, C.R., Signell, R.P., Harris, C.K. and Arango, H.G. (2008), "Development of a three-dimensional, regional, coupled wave, current, and sediment-transport model", Comput. Geosci., 34(10), 1243-1260. https://doi.org/10.1016/j.cageo.2008.02.010
  76. Xin, P., Robinson, C., Li, L., Barry, D.A. and Bakhtyar, R. (2010), "Effects of wave forcing on a subterranean estuary", Water Resour. Res., 46(12),W12505, doi:10.1029/2010WR009632.
  77. Yates, M.L., Guza, R.T., O'Reilly, W.C., Hansen, J.E. and Barnard, P.L. (2011), "Equilibrium shoreline response of a high wave energy beach", J. Geophys. Res., 116(4), C04014, doi:10.1029/2010JC006681.