DOI QR코드

DOI QR Code

Development of Highly-Resolved, Coupled Modelling System for Predicting Initial Stage of Oil Spill

유출유의 초기 확산예측을 위한 고해상도 결합모형 개발

  • Son, Sangyoung (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Chilwoo (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Yoon, Hyun-Doug (Department of Civil Engineering, Myongji University) ;
  • Jung, Tae Hwa (Department of Civil Engineering, Hanbat National University)
  • 손상영 (고려대학교 건축사회환경공학부) ;
  • 이칠우 (고려대학교 건축사회환경공학부) ;
  • 윤현덕 (명지대학교 토목환경공학과) ;
  • 정태화 (한밭대학교 건설환경공학과)
  • Received : 2017.08.09
  • Accepted : 2017.08.25
  • Published : 2017.08.31

Abstract

The development and application of accurate numerical models is essential to promptly respond to early stage of oil spill incidents occurring in nearshore area. In this study, the coupled modelling system was developed by integrating the advection-diffusion-transformation model for oil slick with the Boussinesq model, which incorporates non-linear, discrete, turbulent and rotational effects of wavy flows for accurate representation of nearshore hydrodynamics. The developed model examined its applicability through the application into real coastal region with topographical complexity and characteristics of the resulting flow originated from it. The highly-resolved, coupled model developed in this study is believed to assist in establishing the disaster prevention system that can prepare effectively for oil disasters under extreme ocean climate conditions and thus minimize industrial, economical, and environmental damages.

최근 빈번하게 발생하는 해상 유류사고에 대해 초기에 신속히 대응하기 위해서는 정확성 높은 수치해석 모형의 개발 및 적용이 필수적이다. 본 연구에서는 불규칙한 지형적 변화가 존재하는 근해역에서 유출유의 정확한 확산예측을 위하여 비선형성, 분산성, 난류 및 회전류 효과 등이 포함된 수심적분형 Boussinesq 모형과 유류의 이송-확산-변형모형을 통합함으로써 유출유 초기확산 예측을 위한 결합모형을 개발하였다. 개발된 모형은 지형적 복잡성 및 그에 따른 실제 흐름의 특성을 지닌 실 해역에 적용함으로써 모형의 활용성을 검토하였다. 고해상도의 해상 조건 재현이 가능한 본 개발모형은 기후변화 등에 의해 점차 강화되는 해상 기상의 극한조건에서의 유류 재해에 대비할 수 있는 방재시스템 구축에 도움이 될 것으로 기대된다.

Keywords

References

  1. Chao, X., Shankar, N.J. and Cheong, H.F. (2001). Two- and threedimensional oil spill model for coastal waters. Ocean Engineering, 28(12), 1557-1573. https://doi.org/10.1016/S0029-8018(01)00027-0
  2. Chao, X., Shankar, N.J. and Wang, S.S.Y. (2003). Development and application of oil spill model for singapore coastal waters. Journal of Hydraulic Engineering, 129(7), 495-503. https://doi.org/10.1061/(ASCE)0733-9429(2003)129:7(495)
  3. Cheong, C.J. (2008). Behanir and clean-up technique of spilled oil at sea and shoreline. Korean Society of Environment Engineers, 30(2), 136-145.
  4. Cho, Y.S., Jeong, W.C., Kim, T.K. and Ha, T.M. (2012). Numerical simulation of oil spill in ocean. Journal of Applied Mathematics, 4(15), 1-15.
  5. Dominicis, M.D., Pinardi, N., Zodiatis, G. and Lardner, R. (2013). MEDSLIK-II, a Lagrangian marine surface oil spill model for short-term forecasting-Part 1: Theory. Geoscientific Model Development, 6(6), 1851-1869. https://doi.org/10.5194/gmd-6-1851-2013
  6. Dominicis, M.D., Pinardi, N., Fabbroni, N., Coppini, G., Zodiatis, G. and Lardner, R. (2008). Oil spill forecasting in the Mediterranean Sea. In 5th EuroGOOS Conference. European Commission.
  7. Hyun, S.K., Cho, K.H., Choi, J.Y. and Park, K.S. (2012). A numerical simulation of M/V hebei spirit oil spill. The Society of Naval Architects of Korea, pp. 2230-2233.
  8. Jung, T.S. and Cho, H.J. (2008). Analysis of oil spill dispersion in taean coastal zone. Korean Society of Coastal and Ocean Engineers, 17, 60-63.
  9. Jung, T.S. (2009). Numerical simulation of spilled oil dispersion in taean coastal zone. Journal of the Korean Society for Marine Envrionment & Energy, 12(4), 264-272.
  10. Lee, J.W., Doh, D.H., Kim, K.C. and Kang, S.Y. (2000). Development of simulation model for diffusion of oil spill in the ocean (III) -Oil-droplet spreading measurement using 3-dimentional digital image processing technique. The Korean Society of Marine Environment & Safety, 6(1), 47-55.
  11. Kim, Y.B. (2011). Study on prediction for prompt countermeasures to oil spread in ocean. The Korean Society of Ocean Engineers, 25(2), 108-112.
  12. Kim, Y.S., Lee, H.J., Jung, K.T., Park, J.H. and Lee, H.J. (2012). Numerical experiment on sea prince oil spill incident using a high resolution ocean circulation model. Korea Ocean Reach & Development Institute, 34(3), 337-348.
  13. Kim, D.H., Lynett, P. and Socolofsky, S. (2009). A depth-integrated model for weakly dispersive, turbulent, and rotational fluid flows. Ocean Modell., 27(3-4), 198-214. https://doi.org/10.1016/j.ocemod.2009.01.005
  14. Noye, J. (1987). Numerical methods for solving the transport equation. Num. Model. Application Mar. Syst., 145, 195-229.
  15. Son, S., Lynett, P. and Kim, D.H. (2011). Nested and multi physics modeling of tsunami evolution from generation to inundation. Ocean Modell., 38, 96-113. https://doi.org/10.1016/j.ocemod.2011.02.007
  16. Yang, C.S., Kim, D.Y. and Oh, J.H. (2009). Study on improvement of oil spill prediction using satellite data and oil-spill model : hebei spirit oil spill. Korean Journal of Remore Sensing, 25(5), 435-444.