• Title/Summary/Keyword: Hydration energy

Search Result 182, Processing Time 0.027 seconds

The Range of Physicochemical Parameters for the Active Ingredients of Fungicides and Insecticides as Crop Protection Agents (작물 보호제로서 살균제와 살충제의 활성 성분에 대한 물리-화학 파라미터의 범위)

  • Song, Sun-Sup;Sung, Nack-Do
    • Applied Biological Chemistry
    • /
    • v.46 no.4
    • /
    • pp.280-284
    • /
    • 2003
  • To develope of diagnosis and estimation system for utility of fungicides and insecticides as crop protection agents, various 10 physicochemical parameters, hydrophobicity (LogP), dipole moment (DM), HOMO energy, LUMO energy, molar refractivity $(MR:\;cm^3/mol)$, polarizability $(Pol:\;A^3)$, van der Waals molecular surface area $(A^2)$, van der Waals molecular volume $(Vol:\;cm^3)$, molecular weight (amu), hydration energy (Kcal/mol) for the active ingredients of 133 fungicides and 152 insecticides were calculated. And then the distribution ranges for each of the physicochemical parameters in fungicides, sterol biosynthesis inhibitors (DMI: demethylation inhibitor), insecticides and acetylcholine esterase inhibitors (AChE) were confirmed. It is suggested that the various compounds based on the range of the physicochemical parametes could be predicted for possibilities as fungicides and insecticides.

Characterization of Controlled Low Strength Materials Utilizing CO2-fixation Steel Slag and Power Plant Bottom Ash (CO2고정화한 제강슬래그와 발전소 바닥재를 활용한 저강도 고유동 채움재의 특성)

  • Cho, Yong-Kwang;Kim, Chun-Sik;Nam, Seong-Young;Cho, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.55-60
    • /
    • 2018
  • In this study investigated the Controlled Low Strength Materials using coal ash and steel slag(KR slag) as the main material in the thermal power plant classified as waste resource. Bottom ash and KR slag are mixed at a ratio of 7: 3 to expand the use of industrial by-products through carbonate($CO_2$-fixation) reactions and inhibit the exudation of heavy metals. The results showed that the water content increased as the content of bottom ash increased. It was confirmed that as the powder content increased, the bleeding ratio decreased. Also, as the content of one kind of ordinary portland cement (OPC) decreased, activation of hydration reaction decreased and compressive strength decreased. However, when the mixed composition is appropriately adjusted, the compressive strength of 2.0 MPa required for the controlled low-strength material can be satisfied.

Effect of Gamma Irradiation on Water Uptake Rate and Gelatinization of Brown Rice (감마선 조사가 현미의 수화속도 및 호화양상에 미치는 영향)

  • Lee, You-Seok;Shu, Chung-Sik;Lee, Ju-Woon;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.900-904
    • /
    • 2004
  • Effects of gamma irradiation on brown rice quality were evaluated. Brown rice was irradiated at absorbed dose of 1, 3 or 5 kGy, and ground. Water uptake, pasting properties, and physicochemical characteristics of flour samples were tested. Water uptake rates of irradiated samples were higher than that of control, and were dose-dependent. Hydration capacity decreased in sample irradiated at 5 kGy due to leaching out of soluble compounds, whereas no differences were observed among other irradiated samples and control. Irradiation significantly decreased pasting properties as determined by amylograph. Gamma irradiation accelerated water evaporation at high temperatures (over $300^{\circ}C$) in test of weight-loss profile with thermogravimetric analyzer.

Characteristics of Hydration and Correlation on Cement-Based Thermal Insulation Material

  • Kim, Tae Yeon;Jo, Ki Sic;Chu, Yong Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.489-496
    • /
    • 2019
  • Cement-based thermal insulation material was manufactured using OPC, lime, anhydrite, and CSA cement in this study. The morphology and physical properties of the material were analyzed using XRD. All samples had ettringite, Ca(OH)2, and CaCO3 crystals. The XRD peak intensity of the ettringite and Ca(OH)2 slightly increased with an increase in curing time from 3 to 7 days. The compressive strength values at 28 days of specimens 1-8 were in the range of 0.25-0.32 MPa, and the compressive strength values of specimens 3-8 were > 0.3 MPa. The coefficients of correlation between compressive strength and apparent gravity at 7 days and those between compressive strength and ettringite/Ca(OH)2 XRD peak intensity at 28 days were above 0.8. That is, the compressive strength exhibited an influence on apparent gravity at 7 days and on hydrate at 28 days. The thermal conductivity of all specimens was 0.041-0.045 W/mK, and the highest value of thermal conductivity was shown by specimen 5. The coefficient of correlation between apparent gravity and thermal conductivity was 0.84. It was concluded that control of raw materials and hydrates must be considered for manufacturing of insulation materials. The cement-based thermal insulation material in this study could be used in construction fields.

Bonding of nano-modified concrete with steel under freezing temperatures using different protection methods

  • Yasien, A.M.;Bassuoni, M.T.
    • Computers and Concrete
    • /
    • v.26 no.3
    • /
    • pp.257-273
    • /
    • 2020
  • Concrete bond strength with steel re-bars depends on multiple factors including concrete-steel interface and mechanical properties of concrete. However, the hydration development of cementitious paste, and in turn the mechanical properties of concrete, are negatively affected by cold weather. This study aimed at exploring the concrete-steel bonding behavior in concrete cast and cured under freezing temperatures. Three concrete mixtures were cast and cured at -10 and -20℃. The mixtures were protected using conventional insulation blankets and a hybrid system consisting of insulation blankets and phase change materials. The mixtures comprised General Use cement, fly ash (20%), nano-silica (6%) and calcium nitrate-nitrite as a cold weather admixture system. The mixtures were tested in terms of internal temperature, compressive, tensile strengths, and modulus of elasticity. In addition, the bond strength between concrete and steel re-bars were evaluated by a pull-out test, while the quality of the interface between concrete and steel was assessed by thermal and microscopy studies. In addition, the internal heat evolution and force-slip relationship were modeled based on energy conservation and stress-strain relationships, respectively using three-dimensional (3D) finite-element software. The results showed the reliability of the proposed models to accurately predict concrete heat evolution as well as bond strength relative to experimental data. The hybrid protection system and nano-modified concrete mixtures produced good quality concrete-steel interface with adequate bond strength, without need for heating operations before casting and during curing under freezing temperatures down to -20℃.

Synthesis of [P(AA-co-PEGMM)] Copolymer Films and its Physicochemical Characteristics ([P(AA-co-PEGMM)] 공중합체 필름의 합성 및 물리화학적 특성)

  • Kim, Joun-Sik;Park, Jeong-Sook;Han, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • v.31 no.3
    • /
    • pp.173-180
    • /
    • 2001
  • The physicochemical characteristics such as glass transition temperature (Tg), surface energy, swelling and FT-IR of [P(AA-co-PEGMM)], a copolymer of acrylic acid (AA) and polyethyleneglycol monoethylether mono methacrylate (PEGMM), were evaluated. The Tg of [P(AA-co-PEGMM)] decreased with increasing PEGMM content. [P(AA-co-PEGMM)] with 18 mole% PEGMM had the Tg of about $40^{\circ}C$, the similar physiological temperature of human. Moreover, [P(AA-co-PEGMM)] with lower PEGMM content had higher hydration and expected lower mucoadhesive strengths. To predict the mucoadhesiveness of [P(AA-co-PEGMM)] films, the contact angle of films were measured. With the increasing content of PEGMM of films, the contact angle was increased and the higher mucoadhesive forces was expected. ATR-FTIR studies revealed that the addition of the PEG moiety in AA increased the potential of hydrogen bonding for [P(AA-co-PEGMM)] as compared to cross linking polyacrylic acid (cr-PAA) because the oxygen in the repeat unit of PEG contributed in the formation of hydrogen bonding in the presence of mucin solution.

  • PDF

Study on Micro Wire Straightening Process in SUS 304 (SUS 304 마이크로 와이어 직선화 처리에 관한 연구)

  • Shin, Hong-Gyu;Kim, Nam-Su;Kim, Woong-Kyum;Hong, Nam-Pyo;Kim, Byeong-Hee;Kim, Heon-Young
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.17-22
    • /
    • 2004
  • In the study, we have developed a straightening system for 304 micro wires that are normally used in the medical and semi-conductor fields. To apply heat to the micro wires, we introduced the direct wire heating method which generates the thermal energy by the electrical resistance of the wire itself. To avoid the deterioration of the wire surface by the environment, such as the oxidation or the hydration, the $N_2$ gas was filled in the glass pipe in which the straightening process was being performed. A precision tension meter was also attached to control the tension of the wire during the heating and straightening process. In order to control the straightening process, several experimental investigations with varying the tension, the feeding velocity and the temperature (current) was carried out. As a result of experiments, we obtained the optimal processing conditions satisfying the straightness requirement of the micro wires.

  • PDF

Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin

  • Jeon, Youn-Seok;Jang, Nak-Han;Kang, Byung-Moo;Jeon, Young-Shin;Kim, Chang-Suk;Choi, Ki-Young;Ryu, Hai-Il
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.3
    • /
    • pp.451-456
    • /
    • 2007
  • Tetraazamacrocyclic ion exchangers tethered to Merrifield peptide resin (DTDM, TTTM) were prepared and the ion exchange capacity of these was characterized. The isotope separation of lithium was determined using breakthrough method of column chromatography. The isotope separation coefficient was strongly dependent on the ligand structure by Glueckauf's theory. We found that the isotope separation coefficients were increased as the values of distribution coefficients were increased. In this experiment the lighter isotope, 6Li was enriched in the resin phase, while the heavier isotope, 7Li in the solution phase. The ion radius of lighter isotope, 6Li was shorter than the heavier isotope, 7Li. The hydration number of lithium ion with the same charge became small as mass number was decreased. Because 6Li was more strongly retained in the resin than 7Li, the isotopes of lithium were separated with subsequent enrichment in the resin phase.

Research on One Dimensional Dynamic Model in Water Transportation of PEM Fuel Cell

  • Bakhtiar, Agung;You, Jin-Kwang;Park, Jong-Bum;Hong, Boo-Pyo;Choi, Kwang-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.382-387
    • /
    • 2012
  • Water balance has a significant impact on the overall fuel cell system performance. Proper water management should provide an adequate membrane hydration and avoidance of water flooding in the catalyst layer and gas diffusion layer. Considering the important of advanced water management in PEM fuel cell, this study proposes a simple one dimensional water transportation model of PEM fuel cell for use in a dynamic condition. The model has been created by assumption that the output is the water liquid saturation difference. The liquid saturation change is the total difference between the additional water and the removal water on the system. The water addition is obtained from fuel cell reaction and the electro osmotic drag. The water removal is obtained from capillary transport and evaporation process. The result shows that the capillary water transport of low temperature fuel cell is high because the evaporation rate is low.

  • PDF

Evaluation of Suitable Application of ultra high-strength Concrete to V.H Separated Placement (VH분리타설 공법의 초고강도 콘크리트 적용성 평가)

  • Kim, Hak-Young;Ki, Jun-Do;Park, Hyun;Lim, Byung Chun;Lee, Young Do;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.23-26
    • /
    • 2009
  • Despite vigorous studies on ultra high-strength concrete in Korea, it still faces many challenges in application to on-site construction methods. This study intends to evaluate the applicability of the VH separated-pouring method which is currently used and was designed to pour ultra high-strength concrete with a design strength of 60, 100N/㎟ separately to girder and beam. When it comes to VH separated-pouring, there is a difference in the required design strength between a girder and a beam, which tends to be larger for ultra high-strength concrete. The tensile strength and cold joint at the joint end have not been commonly evaluated and thus the inevitably of its use is dependent on a structural analysis of the structural stress of reinforcement. In the study, potential problems with respect to the building material which might occur during the pouring of ultra high-strength concrete was evaluated and issues on joint surface performance, the hydration energy contained in the members, and the effects of contraction in concrete were considered as the key elements for study.

  • PDF