DOI QR코드

DOI QR Code

Separation of Lithium Isotopes by Tetraazamacrocycles Tethered to Merrifield Peptide Resin

  • Jeon, Youn-Seok (Department of Chemistry Education, Kongju National University) ;
  • Jang, Nak-Han (Department of Science Education, Kongju National University of Education) ;
  • Kang, Byung-Moo (Department of Chemistry Education, Kongju National University) ;
  • Jeon, Young-Shin (Korea Atomic Energy Research Institute) ;
  • Kim, Chang-Suk (School of Science Education, Chungbuk National University) ;
  • Choi, Ki-Young (Department of Chemistry Education, Kongju National University) ;
  • Ryu, Hai-Il (Department of Chemistry Education, Kongju National University)
  • Published : 2007.03.20

Abstract

Tetraazamacrocyclic ion exchangers tethered to Merrifield peptide resin (DTDM, TTTM) were prepared and the ion exchange capacity of these was characterized. The isotope separation of lithium was determined using breakthrough method of column chromatography. The isotope separation coefficient was strongly dependent on the ligand structure by Glueckauf's theory. We found that the isotope separation coefficients were increased as the values of distribution coefficients were increased. In this experiment the lighter isotope, 6Li was enriched in the resin phase, while the heavier isotope, 7Li in the solution phase. The ion radius of lighter isotope, 6Li was shorter than the heavier isotope, 7Li. The hydration number of lithium ion with the same charge became small as mass number was decreased. Because 6Li was more strongly retained in the resin than 7Li, the isotopes of lithium were separated with subsequent enrichment in the resin phase.

Keywords

References

  1. Lim, W. T.; Choi, S. Y.; Kim, B. J.; Kim, C. M.; Lee, I. S.; Kim, S. H.; Heo, N. H. Bull. Korean Chem. Soc. 2005, 26, 1090-1096 https://doi.org/10.5012/bkcs.2005.26.7.1090
  2. Yoon, K. B. Bull. Korean Chem. Soc. 2006, 27, 17-26 https://doi.org/10.5012/bkcs.2006.27.1.017
  3. Kartal, S.; Tokallo lu, S.; Ozkan, B. Bull. Korean Chem. Soc. 2006, 27, 694-698 https://doi.org/10.5012/bkcs.2006.27.5.694
  4. Kim, D. W.; Jeon, B. K.; Kang, B. M.; Choi, K. Y.; Ryu, H. Main Group Metal Chem. 2001, 24, 751-755
  5. Kim, D. W.; Lee, N. S.; Kim, C. S.; Ryu, H.; Kim, J. S.; Kang, B. M.; Jeon, Y. S. European Poly. J. 2002, 38, 2101-2108 https://doi.org/10.1016/S0014-3057(02)00083-6
  6. Kim, D. W.; Kang, B. M.; Lee, N. S.; Kim, J. S.; Ryu, H.; Jeon, B. K. Main Group Metal Chem. 2002, 25, 505-510
  7. Kim, D. W.; Kang, B. M.; Jeon, B. K.; Ryu, H. J. Coll. Interf. Sci. 2002, 254, 190-194 https://doi.org/10.1006/jcis.2002.8411
  8. Kang, S.; Kweon, J. K.; Jung, S. Bull. Korean Chem. Soc. 1991, 12, 483-487
  9. Choi, K.; Ryu, H.; Kim, Y. J. Korean Chem. Soc. 2003, 47, 104- 108 https://doi.org/10.5012/jkcs.2003.47.2.104
  10. Choi, J.; Park, Y. C. Bull. Korean Chem. Soc. 2003, 24, 384-388 https://doi.org/10.5012/bkcs.2003.24.3.384
  11. Choi, K.; Kim, M.; Kim, D.; Kim, Y.; Kim, J.; Ryu, H.; Lim, Y.; Kang, S.; Lee, K.; Hong, C. Bull. Korean Chem. Soc. 2002, 23, 1062-1066 https://doi.org/10.5012/bkcs.2002.23.8.1062
  12. Choi, K.; Kim, M.; Ryu, H.; Lim, Y.; Sung, N.; Shin, U.; Suh, M. Inorg. Chem. Commu. 2003, 6, 414-415
  13. Dorfner, K. Ionenaustauscher, 3rd ed; Dritte, A., Ed.; Waler de Gruyter: Berlin, 1970; p 17
  14. Ion Exchangers; Dorfner, K., Ed.; Waler de Gruyter: Berlin, 1991; p 323
  15. Kim, D. W.; Hong, C. P.; Kim, C. S.; Jeong, Y. K.; Jeon, Y. S.; Lee, J. K. J. Radioanal. Nucl. Chem. 1997, 220, 229-231 https://doi.org/10.1007/BF02034861
  16. Kim, D. W.; Jeon, B. K.; Kim, C. S.; Jeon, Y. S. J. Radioanal. Nucl. Chem. 2000, 245, 509-511 https://doi.org/10.1023/A:1006792706892
  17. Kim, D. W.; Knag, B. M. Chem. Lett. 2001, 250, 291-292
  18. Kim, J. K. Analytical Chemistry; Free Academy Publishing: Seoul, 1998; p 688
  19. Glueckauf, E. Trans. Faraday Soc. 1955, 51, 1235-1244 https://doi.org/10.1039/tf9555101235
  20. Jepson, B. E.; Carins, G. A. Mound Activities in Chemical and Physical Research, Report MLM-2622; EG&G Mound Applied Technologies: Maiamisburg, OH, 1979; p 30
  21. Nishizawa, K.; Takano, T.; Ikeda, I.; Okahara, M. Sep. Sci. Technol. 1988, 23, 233-238
  22. Oi, T.; Shimizu, K.; Hosoe, M. Sep. Sci. Technol. 1999, 34, 805- 813 https://doi.org/10.1080/01496399908951147
  23. Ooi, K.; Miyai, Y.; Makita, Y.; Kanoh, H. Sep. Sci. Technol. 1999, 34, 1133-1139 https://doi.org/10.1080/01496399908951085

Cited by

  1. Green and efficient extraction strategy to lithium isotope separation with double ionic liquids as the medium and ionic associated agent vol.295, pp.3, 2013, https://doi.org/10.1007/s10967-012-2251-7
  2. -4′-aminobenzo-15-crown-5-ether for Lithium Isotope Separation vol.54, pp.13, 2015, https://doi.org/10.1021/acs.iecr.5b00314
  3. Polyvinyl alcohol-graft-benzo-15-crown-5 ether for lithium isotopes separation by liquid–solid extraction vol.311, pp.3, 2017, https://doi.org/10.1007/s10967-017-5181-6
  4. 테트라아자 거대고리화합물(TDM, TPM)을 이용한 마그네슘동위원소의 분리에 관한 연구 vol.12, pp.10, 2011, https://doi.org/10.5762/kais.2011.12.10.4696